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Abstract 
Digital forensics is a relatively young, and rapidly growing area of forensic science. 

Both practitioners and academia have made much progress in the field since the late 

1960’s, when computer evidence was first being considered for use in trials; however, 

there are still many challenges that have yet to be resolved. This work focuses on 

challenges with analysis in digital forensic investigations. Specifically, how more 

information about happened actions in a system might be inferred, as compared to a 

human investigator, based on the observation of low-level traces in a system. This 

research aimed to solve this problem using hypothesis reduction based on the 

observation of trace evidence to reconstruct sequences of happened events. 

This research contributes to the field of digital forensics in the following ways: 

• Provides a method for automated action hypothesis encoding, testing and 

reduction using a form of signature-based matching that is extended beyond 

simple matching to include relational consistency between objects and events. 

This relational consistency is then used for hypothesis detection through 

elimination.  

• Provides a more comprehensive method of detecting the instance(s) of past 

actions based on the observation of the ensemble of traces altered in the 

system. Actions may be modeled as trace update patterns allowing for 

automated, signature-based detection of the actions during a post-mortem 

analysis. 

• Provides logical action-sequence checking over detected actions to infer other 

actions that must have happened, where there are no longer observable traces 

of these actions. This method uses the same signature-based methods to detect 

action sequences, and allow the time bounding of newly inferred actions. 

• Defines categories of trace update behaviors that allow for information about 

an action to be detected. This includes the reliable detection of the most recent 

as well as prior instances of an action, and allows for consistency checking 

that helps to detect anti-forensic techniques.  

• Submits a method for approximating the execution time-span of an action 

based on the observation of associated traces. When an action occurs, traces 

are not created instantaneously, but over a given period of time. Instead of 
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assuming the action must have happened at the time the trace was updated 

(possibly minutes from when the action originally executed), a more precise 

time-span in which the action must have occurred may be found. 

• Gives a methodology for measuring investigation beyond false positive and 

false negative error rating that is currently standard in digital forensic tool 

testing. This methodology allows for the measurement and comparison of 

tools as well as processes, and may be used in conjunction with traditional 

error-rating to help determine what the cause of errors are over time. 

• Provides a method for detecting the occurrence and generic association of 

actions when no prior information is known about the action based on the 

naïve clustering of objects (files) within a certain time-span, where the 

collection of objects will mostly be related to, and contain information about, a 

generic action, such as browsing the Internet. 

In this work, a formal model for event reconstruction using hypothesis reduction is 

given, followed by practical application of the model for hypothesis encoding, 

detection and reduction purposes. A case study is then given comparing the proposed 

model to a machine learning categorization method for the detection of happened 

actions in a system. 

Finally, achievements and implications of this research are described and 

considerations for future research are presented. 
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Chapter 1 

Introduction 
This chapter outlines the motivation for this work, and gives the research objectives to 

be achieved. The contribution of this work is examined, and a summary of related 

achievements is given. The chapter ends by giving an overview of the structure of this 

dissertation. 

1.1 Motivation 
Digital forensics1 is a branch of the forensic sciences that deals with the analysis of 

digital evidence from digital sources (Palmer 2001). Unlike traditional forensic 

sciences, a digital forensic analysis attempts to analyze non-physical evidence, or 

evidence that cannot be directly observed by humans without interpretation. It is 

because digital evidence cannot be directly observed that the admissibility of such 

evidence in court is under constant scrutiny (Casey 2004). To help establish digital 

forensics as a credible forensic science, digital forensic science was defined at the 

first Digital Forensics Research Workshop (DFRWS) in 2001 as: 

The use of scientifically derived and proven methods toward the preservation, 

collection, validation, identification, analysis, interpretation, documentation 

and presentation of digital evidence derived from digital sources for the 

purpose of facilitating or furthering the reconstruction of events found to be 

criminal, or helping to anticipate unauthorized actions show to be disruptive 

to planned operations. 

Since the time of this definition, the areas of preservation, collection, validation and 

documentation have been considerably developed, and various models and standards 

for each phase of digital investigations have been proposed. Although the courts do 

expect some general information assurances (see section 2.3), no one standard has 

seen global acceptance (Reith, Carr et al. 2002; Beebe 2009). 

In terms of research and development, the areas of analysis and interpretation have 

seen much less development due to higher complexity. The current state of analysis 

and interpretation of digital artifacts has been developed in a largely ad-hoc fashion, 

                                                
1 Also known as computer forensics and cyber forensics 
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producing methods that are highly manual, time-consuming and prone to human bias 

and error (Ogawa, Yamazaki et al. 2010). 

Many analysis methods currently proposed and used in digital forensic laboratories 

are highly manual and demand much time from digital investigators. With the 

continuing rise in digital crimes, as shown by Gogolin (2010), and the unsustainable 

consumption of data storage (Casey, Ferraro et al. 2009; Garfinkel 2010), it is no 

longer feasible for investigation techniques, and specifically analysis, to continue to 

be highly manual and time consuming. It is for these reasons that future methods of 

digital investigation must focus on increased automation and validation at each phase. 

The research proposed here is a step to such highly automatic and formalized 

techniques. 

1.2 Research Objectives 
The aim of this research is to contribute to digital forensic science by providing a 

faster, more accurate and more efficient method in which digital investigators may 

conduct digital forensic investigations. The focus of this work will be on the analysis 

and interpretation phases of an investigation, and specifically on how digital forensic 

investigators make decisions and derive information from suspect data. 

The objective of this research is to develop a solution that can effectively automate 

reasoning about artifacts and events derived from a suspect system. 

More specifically, this research is expected to find solutions for the problems of: 

1. Accurate event reconstruction from the observation of the final state of file 

time stamps in a post-mortem analysis 

2. Automated interpretation of information to present the meaning of the state of 

the system to an investigator 

that allow for: 

3. Verification of human inferences during a digital forensic investigation 

4. Automatic identification of suspect chains of events 

One approach towards practical methods of utilizing all relevant sources of 

information to automatically produce knowledge for a digital forensic investigation is 
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to consider the implications of actions on the system, and what this collection of 

actions means in the context of a given fact to be proved. 

The analysis method proposed in this work is based on the theory that both the direct 

observation and inference phases of an investigation of actions can be automated 

using signature-based detection methods. By determining the action instance traces 

that normally appear in a system after the execution of an action, it is possible to 

automatically ‘infer’ the occurrence of the action based on the observable traces. 

1.3 Contribution 
This research contributes to the field of digital forensics in the following ways: 

• Provides a method for automated action hypothesis encoding, testing and 

reduction using a form of signature-based matching that is extended beyond 

simple matching to include relational consistency between objects and events. 

This relational consistency is then used for hypothesis detection through 

elimination.  

• Provides a more comprehensive method of detecting the instance(s) of past 

actions based on the observation of the ensemble of traces altered in the 

system. Actions may be modeled as trace update patterns allowing for 

automated, signature-based detection of the actions during a post-mortem 

analysis. 

• Provides logical action-sequence checking over detected action instances to 

infer other actions that must have happened, where there are no longer 

observable traces of these actions. This method uses the same signature-based 

methods to detect action sequences, and allow the time bounding of newly 

inferred actions. 

• Defines categories of trace update behaviors that allow for information about 

an action to be detected. This includes the reliable detection of the most recent 

as well as prior instances of an action, and allows for consistency checking 

that helps to detect anti-forensic techniques.  

• Submits a method for approximating the instance time-span of an action based 

on the observation of associated traces. When an action occurs, traces are not 

created instantaneously, but over a given period of time. Instead of assuming 

the action must have happened at the time the trace was updated (possibly 
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minutes from when the action originally executed), a more precise time-span 

in which the action must have occurred may be found. 

• Gives a methodology for measuring investigation beyond false positive and 

false negative error rating that is currently standard in digital forensic tool 

testing. This methodology allows for the measurement and comparison of 

tools as well as processes, and may be used in conjunction with traditional 

error-rating to help determine what the cause of errors are over time. 

• Provides a method for detecting the occurrence and generic association of 

actions when no prior information is known about the action based on the 

naïve clustering of objects (files) within a certain time-span, where the 

collection of objects will mostly be related to, and contain information about, a 

generic action, such as browsing the Internet. 

1.4 Summary of Achievements 
This work has had a number of academic achievements. Initial work using formal 

event reconstruction methods was published extending state machine analysis 

techniques (James and Gladyshev 2010). Post-mortem analysis of user activities, and 

specifically reconstruction of user activities through Windows Restore point analysis 

resulted in a number of joint publications with Yuandong Zhu as lead researcher 

(Zhu, Gladyshev et al. 2009; Zhu, Gladyshev et al. 2009; Zhu, Gladyshev et al. 2009; 

Zhu, James et al. 2009; Zhu, James et al. 2010). Work then shifted specifically to 

signature-based detection of past user activities, which has thus far resulted in one 

publication with another currently under review (James, Gladyshev et al. 2010). To 

support this work, information on various aspects of digital crime investigation was 

also collected through surveys with law enforcement (James 2010; James and 

Gladyshev 2010). 

Through this work, research partnerships in other areas of digital forensics were 

created that have lead to publication. Most notably, in the area of digital investigation 

in the Cloud which led to the publication of one paper (Ruan, James et al. 2012) and a 

book chapter (James, Shosha et al. 2012). Other areas include work in malware 

analysis using event reconstruction techniques (Shosha, James et al. 2011; Shosha, 

James et al. 2012; Shosha, James et al. 2012). 
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In an attempt to demonstrate the practical aspects of this research, a software project 

was developed that focused on automated digital forensic investigation, and 

specifically automated analysis. This project led presentations in industry and law 

enforcement conferences (James, Koopmans et al. 2011), as well as collaboration on 

projects with the An Garda Síochána, INTERPOL, Europol, the Korean National 

Police University and the Korea University Digital Forensics Research Center. 

1.5 Dissertation Structure 
This dissertation is divided into 11 chapters.  

Chapter 2 gives a brief introduction into the history of digital forensics and digital 

devices in the legal context. A comparison is made between traditional forensic 

investigation and evidence, and the relatively new concept of digital forensic 

investigation and digital evidence. Legal concepts and terminology relevant to the 

admissibility of evidence in court will be introduced, and an introduction into the 

concepts of digital evidence will be given. The chapter concludes with an introduction 

into the process required of representing media as data; data as information; and how 

the investigator may use information as evidence that supports or denies a hypothesis. 

Chapter 3 begins by establishing terminology and concepts of digital forensic 

investigations that will be used throughout this work. General phases of a digital 

forensic investigation are explained, and commonly used digital forensic investigation 

process models are briefly discussed. This work then begins to limit its focus to the 

analysis, or knowledge acquisition, phase of an investigation, and specifically the 

process of event reconstruction. Finally, issues with traditional event reconstruction 

are examined. 

The use of automation in digital forensic investigations is not only a technological 

issue, but also has political and social implications. Chapters 4 and 5 are provided to 

give further context about the state of the digital forensic community’s acceptance 

and attitudes towards automation in digital forensic investigations. 

Chapter 4 discusses some issues with the implementation and acceptance of 

automation in digital investigation, and the implication for human investigators. 

Attitudes towards the use of automation in digital forensic investigations are 

examined, as well as the issue of digital investigators’ knowledge acquisition and 



CHAPTER 1. INTRODUCTION 

6 

retention. The argument is made for a well-planned, careful use of automation going 

forward that allows for a more efficient and effective use of automation in digital 

forensic investigations while at the same time attempting to improve the overall 

quality of expert investigators. 

Chapter 5 explores the identified issue of how to objectively compare the accuracy of 

highly automated analysis tools to real digital forensic experts. This chapter 

introduces a method based on information retrieval techniques to measure and 

compare the accuracy of tools, investigators and investigation processes. Related 

work is explored, and an argument is given why objective measurement of the 

accuracy of digital forensic investigations is necessary. A simple method of accuracy 

measurement is proposed as a starting point, and a very brief case study is given to 

illustrate the proposed method. 

Chapter 6 examines the need for automatic event reconstruction in digital forensic 

investigations, and explores previously proposed methods. Current issues with 

automatic event reconstruction are given, as well as practical needs that must be met 

before automatic event reconstruction can be of practical value. This chapter 

concludes by introducing the objective and basic ideas of this work. 

Chapter 7 begins by giving a brief introduction into human inference in the context of 

digital investigations. Next, the concept of causation is discussed at a high level. 

After, causal relations in a computer system are discussed that allow for back tracing 

of causal chains from effect to cause. Mathematical notation used throughout the 

remainder of this work is then given, followed by a formal definition of system and 

action models that are the base from which event reconstruction of actions in the 

system can take place. 

Chapter 8 describes the derivation of action instance object update patterns. A 

practical method for determining the relation between actions and object update 

patterns is given. Analysis of object update patterns allows traces to be categorized, 

and rules of consistency to be determined. The need for object update thresholds is 

discussed, and a method for determining the object update threshold for an action is 

given. Next, a brief discussion and method for generalizing signatures for portability 

across suspect systems is given. The chapter ends by giving an overview of the object 

trace update experimentation used to derive general categories. 
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Chapter 9 begins by discussing the inferences of single and multiple occurrences of a 

given action instance based on the previously discussed signature matching methods. 

Consistency between object updates as well as higher-level consistency between 

actions is discussed. A probabilistic method for associating traces to actions when 

uncertainty exists is discussed, and the issues with such a method are discussed. Next, 

generic matching of action instances based on no prior information is then briefly 

described, with case examples explored and weaknesses given. After, high-level event 

reconstruction using the proposed signature-matching model is discussed that enables 

more actions to be inferred based on the presence of previously inferred action 

instances. Finally, the use of the proposed signature-based hypothesis reduction 

methods for human inference verification in digital forensic investigations is 

discussed. 

Chapter 10 gives an evaluation of the proposed signature-based action instance 

detection method. First, the case scenario is given that forms the base case data for the 

remainder of this chapter.  Next, an analysis of the extraction and categorization of 

traces and update thresholds needed to create signatures of action instances is given. 

The results of the signature-based action instance detection method is compared to 

similar work involving action “footprint” generation and matching via machine 

learning techniques conducted by Khan (2008). Weakness of the proposed signature-

based action instance detection method is then examined and discussed. 

Finally, Chapter 11 will give conclusions for this work and explore possible future 

extensions of this research. 

1.6 Summary 
This chapter outlined the motivation for this work, and gave the research objectives to 

be achieved. The contribution of this work was stated, and a summary of related 

achievements outlined. Finally, an overview of the structure of this dissertation was 

also given. 



 

 

Chapter 2 

Digital Forensic Science 
This chapter gives a brief introduction into the history of digital forensics and digital 

devices in the legal context. A comparison is made between traditional forensic 

investigation and evidence, and the relatively new concept of digital forensic 

investigation and digital evidence. Legal concepts and terminology relevant to the 

admissibility of evidence in court will be introduced, and an introduction into the 

concepts of digital evidence will be given. The chapter concludes with an introduction 

into the process required of representing media as data; data as information; and how 

the investigator may use information as evidence that supports or denies a hypothesis. 

2.1 A Brief History 
Although one of the most cited definitions of digital forensic science, as previously 

stated, was defined at the 2001 DFRWS, digital forensic investigation predates this 

academic definition. Several notable but less developed definitions were previously 

proposed, such as those submitted by McKemmish (1999) and Civie and Civie 

(1998). Likewise, beyond academic definitions, research and digital investigations 

were already taking place prior to 2001. For example, Pollitt (1995) claimed that 

“[f]or a number of years now, law enforcement agencies have been seizing computers 

and other electronic devices”. A growing interest in digital forensic investigation is 

confirmed by looking at other works of the early 1990’s (Collier and Spaul 1992a; 

Collier and Spaul 1992b; Clede 1993; Spafford and Weeber 1993). Hannan (2004) 

claims “forensic computing origins lay in the late 1980s…”, which is when computer-

based evidence was encountered more often by police (Jones 2004), and is perhaps 

true for forensic computing as a field or separate science (Garfinkel 2010), but from a 

legal perspective computers and computer evidence were topics of concern before 

then. For example, the U.S. Computer Fraud and Abuse Act was first enacted in 1984 

(USDoJ 2002), and also in the early 1980s Computer in Court - A Guide to Computer 

Evidence for Lawyers and Computing Professionals (Kelman and Sizer 1982) was 

published that considers fundamental legal issues in relation to computer evidence. 

Even prior to this work, the admissibility of computer evidence from digital devices 

has been discussed as early as 1974 (Tapper), with references to computer technology 

in trials appearing as early as 1962. In the mid-1970’s computer evidence became 

more of a focus (Roberts 1974; DeHetre 1975; Jenkins 1975) rapidly evolving 
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through the late 1970s when the computer was compared to an expert witness 

(Teubner 1978), and the basic tenants for admissibility of computer evidence were 

explored (Connery and Levy 1979); most of which is still relevant today. This 

increased interest in the mid-1970’s correlates to the increasing reliance on computer 

systems in business, and an increasing availability and usage among the public 

(Polsson 2011). Even with a considerable amount of evolution and previous work, 

Wilsdon and Slay (2005) claim that there are issues when it comes to implementation 

of past research and development in digital forensic investigations; a claim reiterated 

by Pollitt (2007) and Garfinkel (2010). 

Despite a multitude of technological, and in some ways philosophical, changes to the 

field of digital investigation, the DFRWS definition is still widely accepted. 

Alternatives, or amendments, have been proposed (Hannan 2004; Kent, Chaevalier et 

al. 2006), but the DFRWS definition has remained popular. Since the time of this 

definition, the areas of evidence preservation, collection, validation, identification, 

analysis, interpretation, documentation and presentation have been continually 

developed, and various process models and standards for each phase of digital 

investigations have been proposed. However, no one standard has yet to see global 

acceptance (Wilsdon and Slay 2005; Hunton 2012; Lim, Savoldi et al. 2012), and 

according to James and Gladyshev (2010) the majority of organizations are creating 

their own standard operating procedures (SOP), which are not always directly based 

on a common standard. But regardless of the process used, when considering digital 

forensic investigations, the resulting evidence must be admissible in court (Carrier 

2006a). 

2.1.1 Current State of Digital Crime 
According to Internet World Stats (2011), from late 2000 to late 2011 there has been 

an estimated 528.1% worldwide growth in Internet users, numbering 361 million in 

2000 to 2.267 billion at the end of 2011, a trend which is expected to continue 

(IBTimes 2010; Meeker 2012). Cisco (2012) estimates that there will be over 10 

billion mobile-connected devices by 2016. Further, traditional and non-traditional 

digital devices - such as TVs and kitchen appliances - are expected to be increasingly 

connected to the Internet, contributing to a forecasted 50 billion devices connected by 

2020 (Higginbotham 2010). This growth in users, devices and associated services has 

given rise new possibilities for business and communications, as well as digital crime. 
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Statistics from the Internet Crime Complaint Center (IC3) (IC3 2011), a US-based 

organization, show that there was a 3.4% increase in complaints filed from 2010 to 

2011, with 303,809 and 314,246 complains per year, respectively. McAfee (2010) 

gives an overview of the growth of digital crime from 2000 to 2010, claiming that the 

cybercriminal community evolved from hackers simply looking for a challenge, to 

organized gangs looking to profit off the rapidly increasing use of connected devices 

and services. Some gangs are well established, and in 2011 a single highly-organized 

gang was suspected of being responsible for up to a third of all data thefts (Williams 

2011). Digital forensic investigators, however, not only need to deal with booming 

online criminal activity, but also the use of digital devices related to more traditional 

crimes. For example, Gogolin (2010) claims that most investigations today involve 

some sort of digital component. Cisco (2012) estimates that “[b]y the end of 2012, the 

number of mobile-connected devices will exceed the number of people on earth”. In 

more saturated regions when a crime happens, both criminals and bystanders are 

likely to be producing digital information which may be of use in the investigation of 

a non-digital crime. Amateur pictures and videos taken by cell phones have captured 

abuse, and even murder (Barnard 2009; CNN 2009), and have been used as evidence 

in court (Nguyen 2012). Further, text messages, cell phone logs and geo-location 

services are also commonly analyzed by law enforcement in digital and non-digital 

crime investigation. This presents a difficult situation for digital forensic 

investigators. 

The field of digital forensic science is relatively new, technologies are rapidly 

advancing, and the scope of the digital investigator’s job continually expands. Yet 

funding for digital investigators in law enforcement is slow to increase (Gogolin 

2010). This may change with the perceived2 growing threat of a full-scale “cyber 

war”3, and some countries may begin to focus budgets on digital investigation and 

                                                
2 Some researchers believe various groups have exaggerated the threat of a cyber war. 
Schneier, B. (2010). "The Threat of Cyberwar Has Been Grossly Exaggerated." 
Schneier on Security 
http://www.schneier.com/blog/archives/2010/07/the_threat_of_c.html 2011. 
3 “Cyberwar is a form of war which takes places on computers and the Internet, 
through electronic means rather than physical ones.” Smith, S. E. (2011). "What is 
Cyberwar?"   Retrieved 28 Jan., 2011, from http://www.wisegeek.com/what-is-
cyberwar.htm. 
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security (Paul 2012). Regardless, digital forensic investigators must attempt to keep 

up with rapidly advancing digital, as well as traditional, criminals while ensuring the 

integrity of the science of digital forensics. Rapid changes in digital forensic science, 

however, cannot come from digital forensic investigators alone. Improved 

collaboration and communication is needed between the currently siloed digital crime 

investigation players – military, law enforcement, corporate and academia – and must 

be focused at a global, not national, level (Jones 2012). 

2.2 Digital Forensics and the Forensic Sciences 
Traditional forensic sciences such as forensic pathology (Dolinak, Matshes et al. 

2005) and forensic dactyloscopy (fingerprinting) (Galton 1892) rely purely on 

physical evidence such as wound and disease identification, ballistics, bloody knives, 

fingerprints, etc. Investigators use “tangible, physical items found on, in, or around… 

the crime scene” (Palmer 2002) to determine the circumstances surrounding the event 

that is being investigated. Because all evidence in regards to traditional forensic 

sciences is physical, it can be physically manipulated. Fingerprints at a crime scene, 

for example, may be extracted by dusting the print with a powder, and “lifting” it with 

adhesive tape (Fingerprinting 2010). The same is not possible with digital evidence. 

“The digital realm transcends physical space” (Herrera 2006). Digital forensics is as 

concerned with the representation of information as it is with the tangible physical 

object on which the information is stored. 

Like other forensics diciplines, utmost care must be taken to preserve the physcial 

aspect of evidence, but unlike these areas, care must also be taken to ensure the 

integrity of the represented information. Generally, the hardware associated with an 

incident will by itself provide no information as to the incident in question. For 

example, examining the physical components of a computer will give no insight into 

if someone created a blackmail letter with the machine. To determine if a letter has 

been created, an investigator must look to see what information is being represented 

within the system. This is where digital forensics greatly differs from traditional 

areas. Information about what has happened is not tangible and not directly 

observable (Pollitt 1995). This non-tangible evidence provides a whole new set of 

challenges with regards to evidence for use in court. Where before a jury could see a 

bloody knife and the fingerprints of the suspect, now they must be able to understand 
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that a letter that exists only as a series of magnetized areas on a hard disk drive, and 

hence not ‘real’ in a traditional sense, still has an impact on reality. 

2.3 Legal Concepts 
As stated earlier, when considering digital forensic investigations, the resulting 

evidence must be admissible in court (Carrier 2006a). This is because “[t]he ultimate 

purpose of digital forensic analysis is to assist in finding and convicting perpetrators 

of crime” (Gladyshev 2004). This section will not go in-depth into the various legal 

systems, but instead scope will be limited a Common Law system – a law system 

based on legal precedence, such as that used in Ireland and the United States. The 

purpose of which is simply to familiarize the reader with evidential concepts and 

vocabulary relevant to digital forensic investigations. 

A digital forensic investigator, in assisting to find and convict perpetrators of crime, 

analyzes digital media in an attempt to find evidence that supports a probandum, or 

proposition to be proved. For example, that the suspect knowingly downloaded illegal 

content. In an investigation, multiple hypotheses are proposed that put forward a 

possible explanation for known facts, or points that are indisputably true. Hypotheses 

should be created both for and against the guilt of the suspect. One of the possible 

hypotheses is the probandum to be proved. A digital forensic investigator derives 

facts from data stored on digital devices that are then used as evidence to support or 

negate a hypothesis. Digital evidence is defined as data that persuades a tribunal to 

reach a reasoned belief on a probandum. This evidence can be either inculpatory or 

exculpatory; that is, supporting guilt or innocence of the accused, respectively. Both 

types of evidence are important to consider since a fact can be dependent on the 

context of the information from which it is derived. For example, in many countries 

child exploitation images are illegal to knowingly possess. From this, it is not 

sufficient for a digital forensic investigator to propose the guilt of a suspect as fact 

based solely on the presence of exploitation images on a suspect’s computer, but he or 

she must provide evidence that the suspect was aware of the images. If a computer 

virus was found which is known to automatically download illegal content, this fact 

could be used as exculpatory evidence to support the innocence of the suspect; 

whereas the fact of not finding such a virus could be used as inculpatory evidence 

against the suspect. 
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Since the possible explanations are infinite, found evidence does not prove a given 

hypothesis, but merely increases or decreases the probability of a given hypothesis. 

According to Anderson and Twinning (1998) proof is the persuasiveness of the total 

mass of evidentiary facts. The standard of proof generally required in Common Law 

systems for criminal cases is “proof beyond a reasonable doubt”. In re Winship, 397 

U.S. 358 (1970) found that proof beyond a reasonable doubt has existed as a semi-

formal standard of poof in courts at least “as late as 1798”. The same proceeding 

determined that the “reasonable-doubt standard” is a constitutional requirement in the 

U.S. in accordance with Due Process. Due process is defined as “a judicial 

requirement that enacted laws may not contain provisions to result in the unfair, 

arbitrary, or unreasonable treatment of an individual” ("Due Process" 2012). This 

means that in criminal proceedings, the total body of evidence must prove the guilt of 

the suspect beyond a reasonable doubt, or that “no other logical explanation can be 

derived from the facts except that the defendant committed the crime” ("Beyond a 

Reasonable Doubt" n.d.). 

2.3.1 Legal Proof 
When discussing proof in the legal context, the presumption of innocence, or the 

concept of ‘innocent until proven guilty’, is generally recognized. Because of this, it 

is the responsibility of the prosecution to provide proof supporting a claim against the 

suspect in order to convince the ‘finder of fact’ – e.g. a judge and/or jury – that a 

certain hypothesis is true. This responsibility is referred to as the ‘burden of proof’. It 

is the responsibility of the defense to disprove or otherwise discredit the evidence 

given by the prosecution in order to weaken the persuasiveness of the argument 

against the suspect. “The standard of proof required to discharge the legal burden 

depends on whether the proceedings are criminal or civil” (Keane 2008). The standard 

of proof required in criminal proceedings is defined as proof ‘beyond a reasonable 

doubt’ ("Beyond a Reasonable Doubt" n.d.); while in civil proceedings it is generally 

defined as ‘the balance of probabilities’ ("Balance of Probabilities" n.d.). 

The job of police officers, or digital forensic investigators in this case, is to conduct 

an impartial investigation, and provide an unbiased report on the discovered facts – 

both inculpatory and exculpatory – that are relevant to the probandum. Discovered 

facts can be submitted as evidence, which are then tested by the courts to determine if 

the evidence is admissible. Evidence from digital forensic investigations is considered 



CHAPTER 2. DIGITAL FORENSIC SCIENCE 

14 

scientific, like other forensic sciences, and therefore can be tested against the 

requirements for the admittance of scientific evidence. Assuming the evidence is 

admitted in court, a jury then compares the observed chain of events to the 

probandum, and guilt or innocence is determined. 

2.3.2 Requirements of Scientific Evidence 
As stated by Cohen (2010), “[o]n a global level, the most commonly applied 

standards are similar to the U.S. Federal Rules of Evidence and the Daubert decision”. 

In the United States, the admissibility of scientific evidence was primarily examined 

using the Frye standard - from Frye v. United States, 293 F. 1013(1923) - where 

accepted scientific evidence based on the scientific community’s general acceptance 

of the employed technique. The Frye standard was superseded in 1993 by the Daubert 

standard [Daubert v. Merrell Dow, 509 U.S. 579 (1993); General Electric Co. v. 

Joiner, 522 U.S. 136 (1997); Kumho Tire Co. v. Carmichael, 526 U.S. 137 (1999)], 

although not without criticism (Gutheil and Bursztajn 2005; Giannelli 2006). The 

Daubert standard allows a judge to determine the reliability of scientific evidence 

during what is called a “Daubert Hearing”, usually before the trial. Four general 

categories are used as guidelines when assessing a scientific technique: testing, error 

rate, publication of the technique, and acceptance from the scientific community 

(Carrier 2003). The Daubert standard was introduced to reduce the misuse of 

scientific evidence, but still not all states in America have adopted the Daubert 

standard; either keeping with the Frye standard or opting for their own testing 

methods (O'Connor 2010).  

2.4 Digital Evidence 
The Scientific Working Group on Digital Evidence (SWGDE) define digital 

evidence as “[i]nformation of probative value that is stored or transmitted in binary 

form” (SWGDE 2009). There are two states of data that digital forensic investigators 

must work with: live data and persistent (post-mortem) data. Live data is data in a 

system that is powered on, and is more prone to change. Persistent data is data 

available when the system has been shut down. It must be said that all data has a 

degree of volatility, or susceptibility to change, and the speed in which data is likely 

to change, ordered from fastest to slowest, is known as the order of volatility (OoV). 

Farmer and Venema (2005) give an example of a “rough guide” for the order of 

volatility for different locations of data storage, assuming a live system (Table 2.1): 
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Table 2.1 Approximation of the lifespan of data by Order of Volatility 

Registers, peripheral memory, caches, etc. nanoseconds 

[Random Access Memory] nanoseconds 

Network state milliseconds 

Disk minutes 

Floppies, backup media, etc. years 

CD-ROMs, printouts, etc. tens of years 

 

Digital investigators must consider the implications of collecting each type of data, 

and be able to prioritize the data by the order of volatility. The order of volatility, and 

even availability of data, differs between a live system and an offline system. 

2.4.1 Post-Mortem Data Forensic Acquisition and Verification 
Many digital investigators have been taught to physically disconnect the power, or 

“pull the plug”, on a suspect computer that is powered on at a crime scene (NIJ 2008). 

Disconnecting the power would ensure that evidence would not be modified by 

processes running on the suspect system. Pulling the plug became standard practice 

until relatively recently when investigators, and the legal system in general, started 

considering volatile data, such as data in Random Access Memory, that was being 

lost. Once the power had been removed, a digital investigator was able to copy the 

persistent data, such as data written to the hard drive before powering down. Because 

persistent data is static, it is relatively easy to verify that the data has not changed over 

time. Verification of static data for digital forensic investigation purposes is normally 

done using a cryptographic hash. 

“A hash function (H) is a transformation that takes an input m and returns a fixed-size 

string, which is called the hash value h (that is, h = H(m))” ("Public-Key 

Cryptography Standards" 2009). Hash values are used in digital forensic 

investigations to verify the integrity of data. Hash value in the context of digital 

forensics are defined as “numerical values, generated by hashing functions, used to 

substantiate the integrity of digital evidence…” (SWGDE 2009). 

Once a suspect’s device is shut down, an examiner can make a bit-by-bit copy of the 

storage media, known as a ‘forensic image’ (Shipley and Door 2012). A common way 
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to acquire the suspect’s storage media is by removing the suspect hard drive, and 

attaching it to a workstation using a hardware or software write-blocker to ensure no 

data can be written. Once connected, many tools exist to make a bit-by-bit copy of 

either the whole physical disk, known as a physical disk image, or to make a copy of 

specific partitions on the disk, known as a logical disk image. 

By hashing the suspect bit-level data on the media before acquisition, the resulting 

hash value becomes the standard with which to compare to ensure 1) the data on the 

suspect disk has not changed through actions of the examiner, 2) the created forensic 

image is an exact copy of the original suspect media, and 3) the suspect data can be 

verified by a third-party. Hashing static data at the time of acquisition allows 

investigators throughout the chain of custody to verify that any previous, or current, 

processes have not altered the data they are working with. Persistent data may be 

verified by utilizing the fact that the data should not change over time. Because of 

this, a hash of the data can be compared with the original, even years later. In the case 

of a post-mortem data analysis, the hard drive of a suspect computer can be removed 

and hashed, and a forensic disk image, or exact copy of the data, could be created. 

The disk image could then be hashed. If both hash values are exactly the same, then 

the data on the hard drive, and within the disk image, can be said to be the same. 

Hashing and imaging is normally done after powering down the suspect computer. 

The hashing process is not instantaneous, and shutting down ensures that no data 

changes while hashing process is taking place. In many situations, however, powering 

down a critical server may not be feasible, or data that is relevant to the case may not 

be persistent. In these cases, live data forensics may be the only alternative. 

2.4.2 Live Data Forensic Acquisition and Verification 
Live data forensics has been proposed to “provide additional information that is not 

available in a disk-only forensic analysis” (Adelstein 2006). Live data forensics is 

conducted on a running suspect system, and is used to collect volatile data – such as 

the contents of RAM – that may contain encryption keys, chat fragments, active 

network connections, active processes, cache, etc. 

Live forensic imaging of a suspect drive may also be done on critical systems that 

cannot be shut down. There are a number of benefits and drawbacks to live data 

forensics. Sometimes live data forensics is necessary because the system may be 
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critical to business continuity, shutting down may create legal liability for examiners, 

or the system may have encrypted media that will be inaccessible when dismounted 

(Bilby 2006). In these situations, live data forensics may be the best way to collect 

evidence, although not ideal. Several challenges with live data forensics must be 

considered. 

First, the suspect system is still running, and data is likely to be changing as it is being 

collected. Because of this, it is impossible for a third-party to verify that the data 

collected is correct. This is similar to previously discussed fingerprint extraction 

methods. Acquiring a copy of the fingerprint alters the original, making it impossible 

to be verified by a third-party. In the case of digital forensics, to acquire RAM (from 

the suspect machine) a program must first be loaded into the suspect RAM. Meaning 

that to collect the data, some data must be altered. Further, acquiring RAM takes time, 

and during that time processes may be starting or stopping and users may be 

connecting and disconnecting from the suspect system. By the time the entire contents 

of RAM have been acquired, the state of the RAM has changed from when collection 

began. Hashing methods for verification of live data are only useful for the data that 

has been collected and is no longer changing. Data that has been collected cannot be 

verified after acquisition since the original data is constantly changing, and is no 

longer the same as at the time of acquisition. Also, there is a possibility of crashing 

the suspect system when attempting live data forensics, which has potential to disrupt, 

or even corrupt, critical business data. 

Second, when conducting live data forensics, the investigator will make changes to 

the system. However, in order to collect volatile evidence, the suspect’s computer 

must remain on, and the suspect’s operating system must be used to access the needed 

data4. When retrieving information from RAM, for example, a program must be 

loaded into the running memory, changing its contents. Even just inserting a USB key 

into a running suspect system will alter the system. However, Principle 2 of the 

ACPO guideline states: 

                                                
4 Some data, such as imaging Random Access Memory, can be acquired directly from 
an external FireWire connection: Gladyshev, P. and A. Almansoori (2010). Reliable 
Acquisition of RAM dumps from Intel-based Apple Mac computers over FireWire. 
Second International Conference on Digital Forensics and Cyber Crime (ICDF2C). 
Abu Dhabi, UAE, ICST. 
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In circumstances where a person finds it necessary to access original data 

held on a computer or on storage media, that person must be competent to do 

so and be able to give evidence explaining the relevance and the implications 

of their actions. 

Principle 2 essentially allows the use of live data forensics in extraordinary situations, 

as previously mentioned, as long as the investigator is both competent, and knows the 

full impact of his or her actions. 

Finally, live data forensics usually relies on the suspect system. Alternative methods 

of RAM acquisition, such as the so-called ‘cold boot attack’ (Halderman, Schoen et 

al. 2009) and FireWire acquisition methods (Martin 2007; Gladyshev and Almansoori 

2010) have been proposed, but these methods also have associated risks. Carrier 

(2006c) claims that the suspect system cannot be trusted. Rootkits or other malware in 

the suspect system can provide various anti-forensic functions, resulting in unreliable 

evidence (Bilby 2006). To minimize the reliance on the suspect system, Carrier 

suggests that analysis applications should use their own file system code rather than 

relying on the kernel and system calls, and to use trusted binaries on write-protected 

media; a technique most live data forensic tools, such as Microsoft’s Computer 

Online Forensic Evidence Extractor (COFEE) (Mansfield-Devine 2010; Microsoft 

2010), are using. These techniques do not completely remove the risk of malicious 

code on the suspect system affecting a forensic investigation, but, assuming Principle 

2 of the ACPO guideline has been met, they do reduce the risk to a level that tends to 

be accepted in court. 

Regardless of the drawbacks, live data forensics is sometimes the only option for 

collecting evidence. Live forensic data has been accepted in court (Adelstein 2006), 

and since computer systems are becoming increasingly more distributed, data center 

oriented, and services are becoming more ‘Cloud’ based, traditional post-mortem data 

forensics becomes less of an option. 

2.4.3 Sources of Digital Evidence 
Sources of digital evidence are dependent on the current state of the suspect system. 

For example, if a suspect’s system is live, data from RAM may be accessible. This 

data could possibly hold information that could be used as inculpatory or exculpatory 

evidence, but would not be available if the system was powered down. While 



CHAPTER 2. DIGITAL FORENSIC SCIENCE 

19 

computer systems are common sources of digital evidence, other digital devices, such 

as cellular phones, are becoming just, if not more, common (Kanable 2007; Mislan, 

Casey et al. 2010). Generally, digital forensic science can be separated into four 

generic categories: 

• Computer Forensics 

• Network Forensics 

• Mobile Device Forensics 

• Database Forensics 

From these, different types of data and information can be found. For example, 

computer forensics may focus more on the actions of the user on the system, while 

network forensics would focus on the connections between systems, and cell phone 

forensics may be concerned with the communication between people. All of theses 

types of information, if relevant, may possibly be used as evidence in court to prove 

or disprove a claim if acquired in a forensically sound manner. 

2.4.4 Deriving Digital Evidence 
The previous sections gave a brief background into sources and types of data, but 

some further aspects of evidence derivation from digital devices must be considered. 

The National Institute of Standards and Technology (NIST) give a digital forensic 

investigation process model and describe the conversion of data to evidence at each 

step in the process (Figure 2.1) (Kent, Chaevalier et al. 2006). In this model, each 

layer builds on the one prior. This has several implications regarding the derivation of 

evidence from digital sources. For example, changing even one magnetic charge on 

the physical media has the potential to alter the data that the magnetic charge 

represents.  
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Figure 2.1 National Institute of Standards and Technology, four-phase digital 
investigation model proposed in SP 800-86: Kent, K., S. Chaevalier, et al. (2006). 

Guide to Integrating Forensic Techniques into Incident Response, National Institute 
of Standards and Technology: 121.  

Data is information in digital form, and this altered data may then represent different 

information. Incorrect information may lead investigators to false conclusions, where 

the incorrect information is used as evidence to support the false conclusion. It is for 

this reason that the integrity of the data is of the utmost importance. As mentioned 

before, currently the most accepted way to test whether data has not been altered is to 

create a cryptographic hash the data upon initial acquisition. Since the bit level is the 

lowest level of electronic data representation, verifying that the bit level has not been 

altered also ensures that any higher layers, such as the information layer, have also 

not been altered. However, to derive evidence of criminal activity, data alone is not 

sufficient. In the previously used example of possession of illegal content, context of 

the data is needed to determine whether the possession was known by the suspect, and 

thus illegal. It is because of this that the analysis process in a digital forensic 

investigation involves transforming the raw data (magnetic or bit-level) into a human-

readable (information) form. The first layer involves the interpretation of the data into 

the information it represents. For the purposes of a digital forensic investigation, it is 

imperative that the data is interpreted correctly. Verification of the methods used to 

interpret data has been briefly discussed previously in the context of court. Further 

discussion, however, is beyond the scope of this work. Interpretation of data into the 

information it represents is generally tedious, time consuming, prone to human error 

and sometimes impossible. Because of this, computer software has been, and 

continues to be, developed to attempt to automate the interpretation of data to extract 

the information it represents. 
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Once the data has been transformed into human-readable form, an investigator must 

use his or her training and experience to determine what the information means in the 

context of the investigation. For example, when the interpreted data represents a file 

timestamp, the timestamp itself is information that the investigator may use to support 

or deny a hypothesis. A single piece of information, however, may not provide 

sufficient support for a claim. In this case, multiple pieces of information may be 

necessary to provide enough support or context for a claim. Sufficient5 support for a 

claim produces new facts or conclusions (Giarrtano and Riley 2005). In forensic 

investigations, facts are normally reported in terms of the events that led up to the 

incident, effectively answering how and why an incident took place, if at all. The 

reconstruction of events that have happened are supported with a combination of the 

current state of the data, and knowledge of the way the system functions. The digital 

artifacts that support this reconstruction of events are considered evidence for the 

derived most likely chain of events. 

2.5 Summary 
This chapter gave a brief introduction into the history of digital forensics and digital 

devices in the legal context. A comparison has been made between traditional forensic 

investigation and evidence, and the relatively new concept of digital forensic 

investigation and digital evidence. Legal concepts and terminology relevant to the 

admissibility of evidence in court has been introduced, and an introduction into the 

concepts of digital evidence has been given. The chapter concluded with an 

introduction into the process required of representing media as data; data as 

information; and how the investigator may use information as evidence that supports 

or denies a hypothesis.

                                                
5 Investigators normally attempt to find support they believe will be sufficient to 
demonstrate the likelihood of one claim compared over another in court. 



 

 

Chapter 3 

Digital Forensic Investigation and Analysis 
This chapter begins by establishing terminology and concepts of digital forensic 

investigations that will be used throughout this work. General phases of a digital 

forensic investigation are explained, and commonly used digital forensic investigation 

process models are briefly discussed. This work then begins to limit its focus to the 

analysis, or knowledge acquisition, phase of an investigation, and specifically the 

process of event reconstruction. Finally, issues with traditional event reconstruction 

are examined. 

3.1 Digital Forensic Investigations 
Carrier (2006a) differentiates between ‘digital investigations’ and ‘digital forensic 

investigations’, claiming that “[a] digital investigation is a process to answer 

questions about digital states and events”, while “[a] digital forensic investigation is a 

special case… where procedures and techniques that are used will allow the results to 

be entered into the court of law”. Under this definition, when an investigator is 

conducting a digital forensic investigation, the focus is on ensuring that the overall 

investigation process is able to produce evidence that is admissible in court. While 

this is a requirement for law enforcement (LE), non-LE entities do not always 

consider the admissibility of evidence when beginning an internal investigation. This 

has led to administrators or technicians unknowingly overwriting data of evidential 

value that was later unusable by law enforcement once it was found that the case 

needed to be escalated to a criminal investigation. It is for this reason that all digital 

investigators should be competent, and able to consider how their actions could affect 

future legal recourse. “[A]ny case involving computer forensics should always be 

treated as though it were going to court, and that any documentation and evidence will 

eventually be turned over to a prosecuting attorney” (Shinder and Cross 2008). 

Digital forensic investigations are comprised of many different sub-fields. The 

general sub-fields include computer forensics, network forensics and cellular phone 

forensics: each of which is comprised of more specific forensic studies, e.g. file 

system, memory and software analysis. New forensic combination or sub-fields are 

being created with the advancement of technology, such as critical infrastructure 

(Purdy 2010) and Cloud forensics (Ruan, Carthy et al. 2011). While the technical 
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aspects of an investigation may be specific to the suspect device, the examination and 

investigation process models can be generically applied.   

3.2 Digital Forensic Investigation Phases 
When considering digital forensic process models, there are essentially two layers of 

abstraction that are discussed: the depth of digital forensic examination, and the 

process phases of each type of examination. The depth of forensic examinations was 

not always considered, and each piece of media normally received an in-depth 

analysis. Since the capacity of common data storage media has, and still is, growing 

rapidly – combined with a growing number of cases involving digital media – some 

investigators are finding it impractical to conduct in-depth analysis on each piece of 

media. “[F]ew [Digital Forensic Laboratories] can still afford to create a forensic 

duplicate of every piece of media and perform an in-depth forensic examination of all 

data on those media… It makes little sense to wait for the review of each piece of 

media if only a handful of them will provide data of evidentiary significance” (Casey, 

Ferraro et al. 2009). This philosophy has led to the growing acceptance of digital 

forensic triage (Rogers, Goldman et al. 2006; Koopmans 2010; Mislan, Casey et al. 

2010), as well as the concept of a preliminary analysis; both of which will be 

discussed further. 

Casey, Ferraro et al. (2009) described a three-tiered model of forensic examination to 

enable the “tailoring [of] forensic examination[s] of digital evidence to the type of 

crime or case under investigation”. This model includes a survey/triage forensic 

inspection, a preliminary forensic examination, and finally an in-depth forensic 

examination. Many law enforcement agencies are currently considering, and even 

implementing this model (Goss 2010). Though, corporate and contract-sector digital 

forensic analysts are currently more likely than law enforcement to use triage and 

preliminary analysis techniques (James and Gladyshev 2010). 

3.2.1 Triage Forensic Inspection 
Koopmans (2010) proposed a definition of digital forensic triage that is derived from 

the definition of triage in the medical context: 
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A process for sorting injured people into groups based on their need for or 

likely benefit from immediate medical treatment. Triage is used in hospital 

emergency rooms, on battlefields, and at disaster sites when limited medical 

resources must be allocated. 

 Koopmans then applies the medical definition to computer forensics, resulting in 

computer triage being defined as: “A process of sorting computer systems into 

groups, based on the amount of relevant information or evidence found on these 

computer systems”. Casey, Ferraro et al. (2009) defines triage as a “[t]argeted review 

of all available media to determine which items contain the most useful evidence and 

require additional processing”. In Rogers, Goldman et al. (2006), and later expanded 

by Mislan, Casey et al. (2010), triage is a process, normally performed on-scene, that 

is used to: 

1. assess the severity of a crime and prioritizing it accordingly; 

2. assess the offender’s possible danger to society; 

3. obtain actionable intelligence in exigent circumstances (e. g., missing person, 

military operations, risk of evidence destruction); 

4. identify the richest sources of digital evidence pertaining to an investigation; 

5. identify victims that are or may be at acute risk; 

6. identify potential charges related to the current situation; and 

7. determine whether a certain item requires deeper inspection, such as recovery of 

deleted information or decoding of encrypted data. 

 

Generally, the key point with digital forensic triage is that triage can be used to 

identify the ‘richest sources’ of digital evidence at the scene, allowing the detected 

media’s in-depth examination to be focused and expedited. Triage is an extremely 

high-level examination, designed to be fast, not thorough. Under this philosophy, and 

Koopmans’ definition, triage is not designed to normally remove media from needing 

further examination, and only allows for a shallow, focused view of found evidence – 

aka low hanging fruit – that helps in the prioritization of all the media. However, 

some organizations, such as ADF Solutions (2011), claim that “triage can identify and 

eliminate negative computers with the same degree of confidence as can full forensic 

examinations”. Differences in definition have caused some confusion within the 

digital forensic community. This claim, however, is very different technically and 
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philosophically from triage as previously defined, and should instead be considered as 

a preliminary forensic examination. 

3.2.2 Preliminary Forensic Examination 
A more in-depth examination than triage, preliminary forensic examinations have “the 

goal of quickly providing investigators with information that will aid them in 

conducting interviews and developing leads” (Casey, Ferraro et al. 2009). Depending 

on the results found during triage, the type of case, and the policy of the department, a 

preliminary analysis might be deep enough to justify discontinuing analysis on that 

particular media if nothing was found. Because preliminary analysis is slightly more 

in-depth, it usually takes longer than triage tasks, and as such may or may not be 

conducted on-scene. Several tools with various preliminary analysis workflows exist, 

such as SPEKTOR6, ADF Triage-Examiner7, and the Rapid Evidence Acquisition 

Project8. Most are designed to be easy to use, and are highly automated. This allows 

first responders with minimal training to be able to conduct preliminary analysis 

tasks. Again, depending on the organization’s policy, if evidentiary artifacts are found 

during a preliminary analysis, then the media will continue to receive an in-depth 

analysis with a focus on the already discovered artifacts. If no artifacts were found, 

then further analysis may not be necessary. 

A common concern with making decisions to discontinue analysis on a piece of 

suspect media based on the results of a preliminary analysis is that the analysis is not 

comprehensive enough to make informed decisions, and possible evidence could be 

missed. Studies have shown that decisions to continue or discontinue an analysis 

based on the results of a pre-planned, standardized preliminary analysis could be 

accurately made that did not exclude suspect media that contained evidence (Goss 

2010; James 2012). However, preliminary analysis tasks must be tailored specifically 

for the particular case type, and some tasks, such as file hash comparison, are easier to 

automate than others. 

                                                
6 For more information about the SPEKTOR project, see: 
http://www.evidencetalks.com/ 
7 For more information about ADF Triage Examiner, see: 
http://www.adfsolutions.com/ 
8 For more information about the Rapid Evidence Acquisition Project, see: 
http://cybercrimetech.com/ 
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3.2.3 In-Depth Forensic Examination 
An in-depth forensic examination is usually an analysis conducted in a digital forensic 

laboratory with suspect media that has been seized, and is much more thorough than 

the previous tiers of examination. Because of this, in-depth forensic examination also 

takes a considerable amount of time longer (Goss 2010). Also, because of complexity 

of high-level tasks, this level of examination is more manual than previously 

discussed levels. Casey, Ferraro et al (2009) defines an in-depth forensic examination 

as a “[c]omprehensive forensic examination of items that require more extensive 

investigation to gain a more complete understanding of the offense and address 

specific questions”. This can be considered the standard depth of analysis. The type of 

case and the used digital forensic investigation process model dictates if the previous 

two tiers of examination will be used. There will rarely, if ever, be a case where an in-

depth analysis is not necessary to answer questions about some media. 

3.3 Digital Forensic Investigation Process Models 
“[T]he reality is that there is no single process for digital forensics” (Carrier 2008). 

Various process models have been proposed, and commonly used models will be 

briefly discussed; however, as stated before, there is no one accepted standard, and 

the majority of organizations are creating their own standard operating procedure, 

which may or may not be based on an existing process model. 

3.3.1 Digital Forensic Research Workshop 2001 
In 2001 the Digital Forensic Research Workshop identified an investigative process 

for Digital Forensic Science (Palmer 2001). This process included identification, 

preservation, collection, examination, analysis, presentation, and decision phases 

(Figure 3.1). The items in gray were the most agreed upon, and “were identified by 

the attendees as core processes [of digital forensic investigations]” (Pollitt 2007). 
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Figure 3.1 Digital Forensic Research Workshop 2001 diagram of the digital 
investigation process where the gray area is the area of focus for the workgroup: 
Palmer, G. (2001). DFRWS Technical Report: A Road Map for Digital Forensic 

Research. Digital Forensic Research Workshop. G. Palmer. Utica, New York. 

3.3.2 National Institute of Justice 
The U.S. Department of Justice (DoJ) National Institute of Justice (NIJ), created an 

electronic crime scene investigation guide for law enforcement in 2001. In this work a 

four-phase process model was proposed. This model, however, was later expanded in 

the second edition of the guide (NIJ 2008). The overall model consists of preparation, 

preservation, documentation, collection, examination, analysis, and reporting. 

• Preparation – knowledge about the types of devices commonly encountered, 

potential evidence sources, investigative tools, and equipment for collection, 

packaging and transportation of electronic evidence 

• Preservation – securing and evaluating the crime scene; ensuring the safety of 

persons and protecting the integrity of all evidence 

• Documentation – documentation of the scene, and electronic evidence 

• Collection – “the search for, recognition of, [and] collection of… electronic 

evidence” 
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• Examination – “helps to make the evidence visible and explain its origin and 

significance” 

• Analysis – “looks at the product of the examination for its significance and 

probative value to the case” 

• Reporting – “A written report that outlines the examination process and the 

pertinent data recovered completes an examination” 

3.3.3 National Institute of Standards and Technology 
The National Institute of Standards and Technology proposed a four-phase model in 

the special publication 800-86 (Kent, Chaevalier et al. 2006). This model includes 

collection, examination, analysis and reporting phases (Figure 3.2). 

 

Figure 3.2 National Institute of Standards and Technology, four-phase digital 
investigation model proposed in SP 800-86: Kent, K., S. Chaevalier, et al. (2006). 

Guide to Integrating Forensic Techniques into Incident Response, National Institute 
of Standards and Technology: 121. 

In this model each phase is defined as such: 

• Collection - “identify potential sources of data and acquire data from them”  

• Examination – “assessing and extracting the relevant pieces of information 

from the collected data” 

• Analysis – “study and analyze the data to draw conclusions from it” 

• Reporting – “preparing and presenting the information resulting from the 

analysis phase” 
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3.3.4 Common Process for Incident Response and Computer Forensics 
Freiling and Schwittay (2007) proposed a 3 phase investigation model, named “The 

Common Model”, that seeks to combine incident response and digital forensic tasks 

when an incident occurs to ensure that the incident may be investigated after incident 

response and mitigation has taken place. During incident response, data relevant to 

the investigation of the incident may be deleted or otherwise destroyed, intentionally 

or not, by the suspect or incident responder. By integrating digital forensic tasks into 

the incident response workflow, data relevant to the investigation may have been 

collected before being destroyed.  

This model consists of pre-analysis, analysis and post-analysis phases. Each phase has 

several sub-phases. An analysis in the context of this phase is defined as when 

“compromised hosts or data are reviewed in detail with the intention to reconstruct the 

reason for the security incident in question”. 

The pre-analysis consists of a pre-incident preparation sub-phase, which includes 

development of an incident response plan. An incident response plan should detail 

organization policies on what is acceptable or not. These policies will be the standard 

from which behavior can be tested as a security incident. Next, the incident detection 

sub-phase takes all events as an input (from digital and physical sources), of which 

suspicious events raise an alert. If an alert is raised, the initial response phase 

confirms the incident, or discards the suspicion based on collected information. As 

information is collected, a response strategy is developed to attempt to approach, 

mitigate and investigate the incident. 

Once a response strategy has been developed, the analysis phase begins. The analysis 

phase includes live response, forensic duplication, data recovery, (meta-data) 

harvesting, and data reduction and organization tasks as sub-processes. Once data has 

been collected and organized, the analysis sub-phase attempts to determine the 

reasoning behind the incident. This phase “…tries to answer the questions of what 

happened, when, how did it happen, and who is responsible”. 

The final phase is the post-analysis phase. Post-analysis includes reporting the details 

of the incident, and resolution (and further prevention) of the incident. 
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3.3.5 Integrated Digital Investigation Process 
Carrier and Spafford (2003) proposed a investigation process model that considered 

the physical investigation along with the digital investigation (Figure 3.3). This 

model, named the Integrated Digital Investigation Process (IDIP), takes a holistic 

approach to crime scene investigation, where the physical crime scene reconstruction 

(Figure 3.4) affects, and is affected by, the digital crime scene reconstruction (Figure 

3.5) to form a complete theory of happened events. Unlike the previous models, the 

IDIP feeds back between the physical and digital investigation phases. However, the 

overall model can be described as: Readiness, Deployment, Preservation, Survey, 

Documentation, Search, Reconstruction, Presentation, and Review. 

 

 

Figure 3.3 Integrated Digital Investigation Process Phases: Carrier, B. D. and E. H. 
Spafford (2003). "Getting physical with the digital investigation process." 

International Journal of Digital Evidence 2(2): 1-20. 

 

 

Figure 3.4 Integrated Digital Investigation Process breakdown of physical crime 
scene investigation phase 
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Figure 3.5 Integrated Digital Investigation Process breakdown of digital crime scene 
investigation phase 

All of the previously discussed process models have a common core. While each 

model has components that will continue to be debated, each model generally 

attempts to secure suspect data, analyze the secured data, and report on the findings in 

a way that is admissible in court. To accomplish this, preparation beforehand is 

necessary, as is meticulous documentation throughout the entire process. A particular 

model may be better suited to a certain organization, but generally each model will 

accomplish these main goals. One issue is in the standardization and verification of 

models used. Ensuring that the investigation and examination processes are valid is a 

topic of concern that can only begin to be alleviated when rigor is introduced into 

each phase of a digital forensic investigation. In each of the models an analysis or 

reconstruction phase exists. For the purposes of this work, the scope will be limited to 

the examination and analysis phases of an investigation. 

3.4 Current Digital Evidence Analysis 
When conducting a digital forensic investigation, analysis is possibly the most 

complex phase in any investigation model. This is because during a digital forensic 

analysis the meaning of the state of the suspect data must be considered. Determining 

meaning entails reasoning about the data. When an investigator observes a system, 

and the information that is represented, they are able to use their knowledge of the 

system – which may be incorrect or incomplete – to reason about what the 

information means in terms of the hypothesis to be proved. Reasoning about the 



CHAPTER 3. DIGITAL FORENSIC INVESTIGATION AND ANALYSIS 

32 

represented information is a complex, knowledge-intensive task. Further, some 

investigators claim that intuition plays a part in their investigation. The complexity of 

interpreting what observed information actually means (or doesn’t mean) in the 

context of an investigation, and the challenge of defining and emulating an 

investigator’s intuition, make fully comprehensive automatic analysis software 

impractical. For this reason, current digital evidence analysis is highly manual, using 

software to quickly interpret data and display information that digital forensic 

investigators can then manually reason about. 

3.4.1 Inference Processes 
During an investigation, a digital forensic investigator attempts to reconstruct 

happened events. As previously mentioned, a digital investigator uses observed 

information to support new facts. This is done by observing the sate of the interpreted 

data (information), and reasoning about what the observed information means based 

on their prior knowledge of the system. This process is defined as the process of 

inference.  

“Inference signifies merely the process of thinking about a piece of evidence, not the 

result” (Anderson and Twining 1998). To clarify, inference is not the derived fact 

itself, but rather the reasoning process from known facts that produces new facts or 

conclusions. This work will focus on two common modes of human reasoning used to 

infer new information: deductive and inductive reasoning.  

Deductive reasoning is a process of reasoning from a general case or rule to a specific 

case. Grinnell (1993) states that “…deductive logic consists of forming a theory, 

making deductions from the theory, and testing those deductions, or hypotheses, 

against reality”. “A deduction… proceeds from a generalization to a specific case, and 

that is generally what happens in forensic practice” (Thornton and Peterson 1997). 

Inductive reasoning, on the other hand, begins with a specific observation, and builds 

on these observations to make more general statements (Grinnell 1993). “An 

inductive argument… is where the conclusion is made likely, a matter of some 

probability, by offering supporting conclusions. It is at best a prediction about what 

might be true” (Turvey 2008). 

If a digital forensic investigator has in-depth knowledge of how the system functions, 

inferences can be made to derive facts from observations that allow reconstruction of 
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the events in the system that lead up to the final observed state. The truth of these 

derived facts, however, may not be certain due to incomplete knowledge or due to a 

limitation of observable information. 

3.5 Event Reconstruction 
Crime scene reconstruction is necessary because an investigator may have no 

knowledge about what happened at the scene of the crime. By reconstructing the 

crime scene with artifacts found at the scene, an investigator can potentially determine 

the happened events and give context to those events. Physical crime scene 

reconstruction is defined as “[t]he use of scientific methods, physical evidence, 

deductive reasoning, and their interrelationships to gain explicit knowledge of the 

series of events that surround the commission of a crime” (ACSR 2006). This 

definition can be directly applied to digital crime scene reconstruction by substituting 

physical evidence for digital evidence. The resulting definition is: 

Digital crime scene reconstruction is the use of scientific methods, digital 

evidence, deductive reasoning, and their interrelationships to gain explicit 

knowledge of the series of events that surround the commission of a crime. 

When reconstructing a crime scene, the reconstruction is divided up into events. An 

event in this work is defined as an occurrence that causes a change in the state of an 

object or system. Event reconstruction is done in both physical and digital 

investigations. For example, when investigating a fire, the progress of a fire can be 

determined by using a technique termed “arc mapping” (NFPA 2005). Arc mapping is 

the process of reconstructing particular events; in this case, arcs in electrical circuits 

caused by the heat of the fire. By determining where particular events have occurred, 

the progression and origin of the fire can be determined. This is similar to crime scene 

reconstruction. In order to determine what has happened, clues from the scene, as well 

as reasoning about observed evidence, are used to reconstruct the happened events. 

When more events have been identified, a more comprehensive picture of the overall 

crime scene reconstruction is possible. Since event reconstruction deals with partially 

known facts, the investigator must use reasoning about observed information to help 

fill in the gaps of unknown information. 
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3.5.1 Challenges with Traditional Event Reconstruction 
In law enforcement, investigators rarely, if ever, have a complete picture of exactly 

what happened at a crime scene. When attempting to reconstruct the events that led up 

to an incident, investigators have to contend with a number of factors that make event 

reconstruction difficult, and sometimes impossible. The first of which is the issue of 

incompleteness. Usually artifacts that provide information about what has taken place 

are available at the crime scene, or on the suspect or victim. These artifacts – either 

through malicious activities or simple evidence dynamics9 – do not explicitly give a 

complete picture about the crime that has taken place; this knowledge must be 

inferred from the collection of artifacts and conclusions that can be made. For 

example, finding a human hair on a murder victim does not allow for the assumption 

that the owner of the hair is the murderer. It does, however, allow an investigator to 

infer that the owner of the hair and the victim has come in contact some time in the 

past. The investigation then can continue using this new, but still incomplete, 

knowledge. 

The next issue investigators face when attempting to conduct event reconstruction is 

the use of incorrect facts on which his or her inferences are based. For example, 

assume a witness, who was thought to be reliable, was mistaken about seeing Mr. X at 

the scene of the crime at the time of the murder. Based on this information, it could be 

inferred that if Mr. X was at the scene of the crime at the time of the murder, then Mr. 

X has knowledge of the murder. However, this may be a false conclusion. The initial 

fact, that Mr. X was at the scene of the crime, may be false, meaning that the 

conclusion that follows could also be false. 

Similarly, facts from which inferences are based are very dependent on the way 

humans perceive the world. “… [P]eople are not very good at [reasoning] because we 

tend to mix up the semantics with the reasoning process itself, and so do not always 

reach a valid conclusion” (Giarrtano and Riley 2005). Likewise, cognitive bias very 

much depends on cultural and environmental factors that naturally make humans 

more or less biased in a particular situation. “… [M]any questionable and erroneous 

                                                
9 Evidence dynamics is an influence that changes evidence regardless of intent, such 
as rain washing away blood. Chisum, W. and B. Turvey (2000). "Evidence dynamics: 
Locard's exchange principle & crime reconstruction." Journal of Behavioral Profiling 
1(1): 1-15. 
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beliefs have purely cognitive origins, and can be traced to imperfections in our 

capacities to process information and draw conclusions” (Gilovich 1993). For 

example, bias against race, creed or gender can stem from stereotypes about these 

groups being accepted as fact, and can cause a perceived increase in the likelihood of 

a certain act when there is no statistical proof to back up this conclusion. Even 

training and experience in law enforcement can allow an investigator to have a 

perceived increase in capability to identify when a suspect is lying, when studies 

would suggest that there is actually little to no increase in deceit judgment accuracy 

(Meissner and Kassin 2002). 

3.6 Summary 
This chapter has established terminology and concepts of digital forensic 

investigations that will be used throughout this work. General phases of a digital 

forensic investigation are explained, and commonly used digital forensic investigation 

process models were briefly discussed. Focus was then shifted to the analysis, or 

knowledge acquisition, phase of an investigation, and specifically the process of 

human event reconstruction. Finally, issues with traditional event reconstruction were 

examined.



 

 

Chapter 4 

Challenges with Automation in Digital Forensic 
Investigation 
The use of automation in digital forensic investigations is not only a technological 

issue, but also has political and social implications. Chapters 4 and 5 are provided to 

give further context about the state of the digital forensic community’s acceptance 

and attitudes towards automation in digital forensic investigations. This chapter 

discusses some challenges with the implementation and acceptance of automation in 

digital investigation, and possible implications for human investigators. Attitudes 

towards the use of automation in digital forensic investigations are examined, as well 

as the issue of digital investigators’ knowledge acquisition and retention. The 

argument is made for a well-planned, careful use of automation going forward that 

allows for a more efficient and effective use of automation in digital forensic 

investigations while at the same time attempting to improve the overall quality of 

expert investigators. 

4.1 Attitudes Towards Automation 
Highly automated digital forensics – sometimes referred to as “push-button forensics” 

(PBF) – receives much criticism from the digital investigation community. Criticisms 

generally appear to focus on two aspects of digital investigations: a deterioration of 

expert knowledge by an overreliance on PBF, and a perceived less thorough, or lower 

quality, investigation when relying on a high level of automation. However, critics 

also currently accept a certain level of automation to help them in their daily tasks. 

Manually comparing each hash in a hash database, for example, would be impractical 

without some level of automation. The challenge comes when higher-level processes, 

such as analysis, are being automated, and also when the investigator begins to loose 

understanding of the underling concepts of the investigation. Both of these scenarios 

are currently happening to some extent. Digital investigation software suits such as 

EnCase (Guidance 2010), Forensic Tool Kit (AccessData 2010), Autopsy Forensic 

Browser (Carrier 2010), and others allow an investigator to conduct preliminary, and 

even some complex investigation tasks simply by knowing which button to press. 

These popular tools endeavor to make the job of the investigator easier, or even 

remove the expert altogether, as seen in a claim from Access Data (2009): “Digital 

investigations are no longer the exclusive domain of highly trained experts”. Full-
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featured forensic software suites are not the only potential source of issues. Simple 

programs such as TraceHunter (Zhu, James et al. 2010) provide correlation, 

interpretation, and some analysis of the Windows Registry regardless of the 

practitioner’s knowledge, and the same can be said for scripts written by experienced 

investigators that are then distributed to others who may have little to no knowledge 

of the underlying processes and data sources. Despite criticisms, the reality today is 

that investigators are currently using a high level of automation in investigations, and 

newer, or uninterested, investigators who are trained on a specific tool may be unable 

or unsure how to do investigations without the use of automation. This is contrary to 

the view that every investigator should have a solid, non-tool-centric knowledge of 

the investigation process. Whether this lack of knowledge comes from a lack of 

training, time or funding, it has real implications on the quality of investigations being 

conducted. 

Kovar (2009a; 2009b), considers the value of push button forensics, and cites three 

main reasons for the acceptance of increased automation: The tool vendors’ need for 

the expanded non-expert market will evolve push-button interfaces, speed-related 

financial interest from consumers of computer forensics services (law enforcement, 

private sector, etc.), and the growing volume of digital evidence resulting in case 

backlogs. The general reply to this claim was that practitioners must understand 

“…the science, logic, and art behind the PBF tools” (Kovar 2009b). The admissibility 

of evidence found purely from a technician running a tool was also questioned. Kovar 

claims that many technicians are already using push button tools as part of the 

computer forensic process. He ultimately concludes, “There clearly are risks to using 

PBF and inexperienced examiners inappropriately, but through sound business 

practices they can safely contribute to our projects and improve our efficiency in the 

process”. However, no mention is given to how PBF tools should be implemented in 

the investigation process to ensure quality. Kovar is also focusing only on 

inexperienced examiners, whereas improperly implemented automation can become 

an issue for experienced and inexperienced alike, if not managed properly. 

Similarly, Casey (2006) states that “too little knowledge is a dangerous thing” in 

regards to digital investigations. He claims that inexperienced internal or outsourced 

investigators may have an “…over reliance on user-friendly or automated forensic 

software”, and may “…apply a form of pseudo-automation by rigidly following 
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predefined protocols”. Casey also states that, “Inexperienced individuals who do not 

critically review the results of a tool will inevitably misinterpret or completely miss 

digital evidence”. He cites the limitations of self-assessment, and calls for set 

standards in digital investigation competencies and processes. 

While each point may be valid, the reason for the use of less-experienced 

investigators, reliance on automation, and a lack of certification and thorough checks 

of labs and contractors is simply an issue of time and cost. Some organizations may 

have the resources to be able to use certified labs and highly trained and experienced 

investigators, but law enforcement is a tradeoff between the cost and results, known 

as a ‘balance scorecard’ (Ashworth 2010). “[Hiring specialists] would force law 

enforcement agencies to incur great expense, perhaps a crushing expense for smaller 

police departments that already face tremendous budget pressures” (US v. 

Comprehensive Drug Testing, 2009). If Law Enforcement (LE) gets satisfactory, 

admissible results from a non-certified lab or automated software in half the time and 

cost, then management will have to judge whether the cost savings outweigh the 

perceived cost to justice, which also raises the challenge of precision measurement in 

digital investigations. This is an unfortunate reality that may be helped with improved 

performance measurements and standardization, such as the standards proposed by 

Lee (2008) and the UK Forensic Science Regulator (2011), but will never be 

completely solved; potentially resulting in missed digital evidence. 

Another challenge is the definition of an experienced investigator. Experience is not 

the same as competence. Irons, Stephens, et al. (2009) specifically differentiate 

between practice and theory as well as skills and knowledge when dealing with the 

training of competent digital investigators, claiming that each area needs to be 

developed to ensure competency. However, neither Irons nor the UK Forensic 

Science Regulator focus on the investigator’s retention of learned theory and 

knowledge; only present performance and undefined technical skill maintenance. 

Similarly, most studies assume that all investigators or technicians are also interested 

in their job, and are free of possibly undiagnosed psychiatric and learning disorders 

that can inhibit or prevent learning and retention beyond the basics required for the 
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job10 (Goldstein 1997; Wender, Wolf et al. 2001). This is a bold assumption 

considering “only 51 percent [of Americans] now find their jobs interesting” (CBS 

2010), and approximately 1 in 4 adults in America suffer from a mental disorder, 

some of which may affect learning and retention (Kessler, Chiu et al. 2005). In these 

situations, potential evidence may be missed due to disinterest or lack of retention of 

knowledge. 

Despite skepticism, automation is already being used in digital investigations. Digital 

forensic triage, for example, is a rapidly growing and highly automated area. Many 

works (Rogers, Goldman et al. 2006; Casey, Ferraro et al. 2009; Goss 2010; 

Koopmans 2010; Mislan, Casey et al. 2010) have called for advances in computer and 

mobile phone triage because they realize the benefits of fast, automated, on-scene 

intelligence gathering. These benefits have been examined within a UK high-tech 

crime unit in Goss (2010), which showed a reduction in the amount of seized 

computers and suspect data needing an in-depth analysis. Goss also compared 

automated triage performance with manual investigation finding that triage gave 

comparable examination results in a fraction of the time for specific case types where 

in-depth knowledge is not required, such as child exploitation image detection. In 

more complicated cases, where knowledge of the system is necessary for analysis, 

triage was less reliable, and often missed potential evidence. 

While triage has been shown to have definite benefits in some specific cases, there are 

still challenges, such as investigator training, potential missed evidence and 

verification challenges that need to be addressed. 

4.2 Knowledge 
Ianuzzi (2007) claims that one challenge with automating digital investigations is that 

automation may “dumb down the profession”. This parallels the idealistic view, 

shared by some investigators and researchers, that most investigators have already 

achieved an undefined “good” standard in forensic knowledge. This seems to be a 

dangerous assumption, but is commonly cited as an argument against automation. 

There are currently unqualified, unknowledgeable forensic practitioners that are 

                                                
10 For more information on workplace disability anti-discrimination legislation in the 
US and UK, see the Americans with Disabilities Act of 1990 (ADA) and the 
Disability Discrimination Act 1995 (DDA) 
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conducting digital investigations (Jones 2004; Everett 2005). This may be true for 

practitioners who were chosen for the job because they had basic computer skills, to 

people with 10+ years experience that generally have no interest in learning anything 

but the minimum required to keep their job. 

Just like any profession, expansive expert knowledge cannot come only from the 

field; it must also come from continued formal and informal study. As stated by 

Gogolin (2010), “digital skills are perishable if not kept current”, and 75% of 

investigators receive between zero (30%) and 5 days annual training. Casey (2009) 

affirms that “there are some fundamental principles, concepts, and skills that everyone 

in this field must abide by and know”. Likewise, Irons, Stephens et al. (2009) claim, 

“the implicit expectation is that digital investigators should be competent before 

undertaking any digital investigation duties”. But this is not always the reality. Many 

investigators have little to no digital investigation training before starting, and even 

after, “[o]nly 34% of [digital forensic] investigators [surveyed in Michigan, USA] 

received formal training in laboratory forensics, with the majority being trained 2 

weeks or less” (Gogolin 2010). 

Likewise, EURIM (2004) claimed that in 2004 “…barely 1,000 [police officers in the 

UK] have been trained to handle digital evidence at the basic level and fewer than 250 

are currently with Computer Crime Units or have higher level forensic skills”. Neil 

Hare-Brown claimed that as much as 20% of digital investigation consultants in the 

UK are “unfit” (Everett 2005); however, “fitness” in this case is undefined, and many 

initiatives since 2005 may have improved this estimation. This lack of definition for 

investigator fitness is industry-wide since “there is an absence of standards and 

competencies in the field of cybercrime” (Jones 2004). However, efforts for 

standardization are being made (Lee 2008; HomeOffice 2011). Also, consider that 

these statistics are from the US and Europe; areas that generally have money to invest 

in standards and training. This may mean that countries with less funding receive 

even less quality training, and may have less access to education, equipment and 

skilled investigators in general. The result of this global, and even national, imbalance 

in funding, training, aptitude, interest, intelligence and skill results in few experts, 

many technicians and a huge variation in the quality of digital investigations world 

wide. 
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A lack of knowledge can lead to missed evidence and incorrect conclusions, and 

based on the given statistics this is likely happening without the use of automation. A 

“dumbing down” of the profession may happen if investigators with expert level 

knowledge over-rely on automation for their analysis, but for untrained investigators 

with little-to-no knowledge to begin with, automation may enable them to find and 

evaluate evidence that may have otherwise been overlooked. 

4.2.1 Digital Investigation Training 
In a report by the High Technology Crime Investigation Association (HTCIA) (2010), 

training for practitioners was a primary concern, claiming that 73% of respondents 

believe they do not receive enough training, especially in digital forensics, online 

investigations, and computer and network security. “Many respondents did not 

indicate that more personnel were necessarily needed, but rather believed more 

training at all levels was important.” This parallels a study done by Gogolin (2010) 

that showed the majority of digital investigators interviewed were not receiving 

formal training before or during their employment. The result is that “…it typically 

takes between one and two years of on-the-job training before a newly minted 

forensics examiner is proficient enough to lead an investigation” (Garfinkel 2010). 

These studies indicate that more training is desired, but there are some challenges, 

especially funding, time and training quality, that are hindrances to investigator 

development. 

4.2.2 Training Quality and Retention 
One challenge is simply a lack of quality investigator training, partially caused by the 

absence of a “…common agreement on the sets of skills for which training would be 

most beneficial” (EURIM-ippr 2010). Without a standard digital investigation 

common body of knowledge (CBK), such as the work proposed by (Lee 2008), 

colleges and other training organizations are able to design digital investigator 

training based on marketing rather than industry-driven quality. Many organizations 

have started programs specifically to capitalize on the current popularity of crime 

investigation TV shows, and the increased interest in the field based on the show, 

known as the “CSI effect”. “The CSI effect is leading many high school and college 

students to take forensic science or criminalistics courses and prepare for careers in 

the field” (Dempsey and Forst 2009). When education programs have no standard to 

which they must adhere, it becomes difficult for new students, and possibly 



CHAPTER 4. CHALLENGES WITH AUTOMATION IN DIGITAL FORENSIC 
INVESTIGATION 

42 

employers, to ensure they are getting a quality education. A standard body of 

knowledge or standard of quality, however, should not be confused with an 

educational content limitation. The aim of education is to prepare independent 

thinkers, but those thinkers should also be well versed in their respective areas. This is 

not always the case. As stated by Jones (2004), “we all know of training courses 

where there is no independent assessment of the student knowledge, yet the 

certificates issued to the students (after payment of the course fee) lend them 

credibility”. 

The same can also be said for vendor training with no third-party assessment where 

the certification of an unfit customer and what is best for the vendor’s business could 

be a conflict of interest. Also, in other fields it has been shown that short, intensive 

training sessions, such as those offered by many certification bodies, produce gains in 

knowledge that are acceptable to immediately certify, usually at the end of the 

training session (McGguire, Hurley et al. 1964; Wik, Myklebust et al. 2002), but the 

majority of the knowledge is not retained after 6 months, as illustrated in Figure 4.1. 

“The data strongly suggest that in the absence of opportunity to practice the recently 

enhanced skill under conditions where critical evaluation of performance is available, 

individual gains are not maintained over a period of several months” (McGguire, 

Hurley et al. 1964). Since some basic and many advanced forensic concepts are not 

used on a daily or even weekly basis, intensively trained and certified investigators 

could eventually have credentials that certify them beyond the scope of their 

understanding or skill. This situation is made worse when a trained investigator is 

able to rely on highly automated tools, rather than utilizing their own knowledge. 

Automation in this case may allow unknowledgeable investigators to appear 

acceptable, and may cause a deterioration of knowledge in knowledgeable experts. 
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Figure 4.1 A diagram of scores before, immediately after and 6 months after a short 
period intensive learning, showing immediate gains and long-term retention. 

McGguire, C., R. E. Hurley, et al. (1964). "Auscultatory Skill: Gain and Retention 
after Intensive Instruction." Journal of Medical Education 39(2): 120-131. 

4.2.3 Time 
Along the lines of intensive training courses, time for training is a factor. Consider 

that in 2004 the United Kingdom digital crime investigation backlog was 6 to 12 

months (EURIM-ippr 2004), and rose to 18 to 24 months in 2009 (2009) before being 

improved through a number of policy, case prioritization and evidence outsourcing 

initiatives (Kohtz 2011). Currently in the United States there are reports of backlogs 

from 12 to 18 months (Raasch 2010), and in some cases “approaching or exceeding 2 

years” (Gogolin 2010). With a growing backlog, investigators are pressured to work 

faster, which could mean less time to study underlying concepts, even informally. 

Likewise, during discussions few investigators have reported being up to date on 

research topics that could improve their processes. If a technician can quickly be 

trained to extract information without receiving in-depth training about the underlying 

concepts, and the information they extract is still admitted into court, then, as 

previously stated, management will have to judge whether the time and cost savings 

outweigh the perceived cost to justice. 
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4.2.4 Funding 
Funding is yet another rival to knowledge. “Most cybercrime training funding comes 

out of budgets rather than assistance [grants]” (HTCIA 2010), which means needed 

training is competing with department maintenance, new equipment, software, budget 

cuts, increasing amounts of data as well as expanding job scope. “No agency in the 

study reported an increase in funding for digital crime investigation over the previous 

year” (Gogolin 2010). Casey, Ferraro et al. (2009) observes “few [Digital Forensic 

Laboratories] can still afford to create a forensic duplicate of every piece of media 

and perform an in-depth forensic examination of all data on those media”. This may 

force departments to choose purchasing a software suite and rely on its automated 

features, rather than have trained experts but not enough software licenses. A 

common training model appears to be purchasing a certain tool, sending one person to 

receive training, and then having this person train others when they return. This 

method could be effective, but as seen before, a lack of understanding or knowledge 

retention could lead to partial or incorrect knowledge being disseminated. Again, this 

is considering countries that have a budget to work with. In some countries the total 

annual budget for cybercrime investigation may be less than the cost of a single three-

day training course from a popular forensic software vendors. 

Ultimately, in the current investigation model tools with more features and a greater 

amount of automation will save time, but will consistently need to be upgraded and 

renewed. More tools will be needed to cover the expanding scope, and new equipment 

will be needed to support the tools. The technological needs of a department contend 

with the training needs, and products that require little to no training to use will be 

considered a cost saver. 

4.2.5 Interest and Attitudes 
Interest in the job and belief in its mission, as mentioned before, is also often taken 

for granted. This has a number of implications: First, if people put their personal 

desires before the good of the company, funding can be easily wasted, as seen in the 

US Congress (2004) where the cost of excessive flights outweighed the benefit of 

attending a conference. Second, with a mere 51% job satisfaction rate in the US (CBS 

2010), and a +34% net job satisfaction rate in the UK (CIPD 2010), it would be naïve 

to think that law enforcement, and digital investigators specifically, are immune to 

uninterested employees. This means some investigators may be doing the minimum 
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required for the job, not for justice, but simply as a means to an end. Finally, 

overexposure to particular types of investigations could lead to categorization bias 

(Anderson 1991). Each of these implications could have a profound negative impact 

on the quality of investigations being conducted. By utilizing automation in digital 

investigations as it is currently implemented, uninterested persons may be able to 

conduct investigations with minimal effort that appear satisfactory but in fact lack in-

depth expert analysis. 

4.3 Certification and Licensing 
Certification and licensing is a much-debated topic in information security and digital 

investigation. In the US, for example, some states require digital forensic examiners 

to be licensed as private investigators, while others do not. And “licensing 

requirements for forensic examiners have yet to be standardized on a national 

level…” (Manes and Downing 2009), which can lead to examiner licensing issues in 

multi-state cases. The American Bar Association (2008) is opposed to requiring 

private investigator licenses for forensic examiners, but “supports efforts to establish 

professional certification or competency requirements for such activities…”. Other 

countries have yet to adopt licensing requirements for digital forensic examiners, and 

currently rely on the plethora of digital examiner certification programs. But again, 

training and certification will only be done in countries with the budgets to do so. And 

in those countries, without a defined standard, investigators and employers may find it 

difficult to differentiate between the levels of quality of various certifications. 

4.3.1 Investigator Certification 
The Digital Forensics Certification Board (DFCB), SANS, (ISC)2, International 

Association of Computer Investigative Specialists (IACIS), The International Society 

of Forensic Computer Examiners (ISFCE), EC-Council, forensic software vendors, 

and many others offer certification for digital investigators. Some with little or no 

work experience requirements. In Codes of Practice and Conduct for forensic science 

providers and practitioners in the Criminal Justice System (2011) the term 

“competence” is often used, but nowhere is competence or competence testing 

explicitly defined, save references to National Occupational Standards (NOS) from 

Skills for Justice (2010), which claim to “describe competent performance in terms of 

outcomes [and] …allow a clear assessment of competence against nationally agreed 

standards of performance”. However, NOS appear to be limited to overall general 
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forensic procedures, allowing for a standard procedure to ensure the proper 

consideration and handling of evidence, but with no digital examination-specific 

performance criteria. Beyond NOS, the Forensic Science Regulator (2011) has 

proposed to rely on “appropriate records of education, training, skills and experience 

in sufficient detail to provide evidence of proper training and formal assessment”, 

which again leaves the definition of “appropriate” to each individual department. This 

lack of concrete definition, combined with an overwhelming amount of available 

certifications, can cause confusion among practitioners and employers, and allow 

incorrect evaluation of competency. “It’s important to understand that certification 

does not mean mastery… In fact, certification doesn’t necessarily even mean 

professional competency” (Huber 2010). 

4.4 International Collaboration 
Forensic practitioners and government officials often talk about LE knowledge, 

standards and competency from a national or regional perspective. However, Huber 

(2010) explained that “digital forensics is very much an interstate and international 

issue”. The IT security sector is beginning to accept the need for global cooperation 

for incident response (Sambandaraksa 2010), but the forensics community has been 

slower in this regard. Some attempts at international cooperation involving 

investigator-sharing for digital forensic investigations have taken place (INTERPOL 

2008), which have led to many questions of jurisdiction and acceptable procedure. 

However, investigations with cross-jurisdiction components happen often, with 

varying degrees of success. According to Brenner (2006) “countries’ ability to assert 

jurisdiction over those who perpetrate cybercrime, both locally and transnationally, 

does not seem to be particularly problematic.  …[The] issue is how to prioritize 

conflicting claims to assert jurisdiction over transnational cybercriminals”. When 

considering standardization, unless there is an accepted global standard for digital 

investigations, the way evidence is handled in another country may not meet the legal 

or time requirements of requesting countries. Even if standards were put in place, 

practitioners in some countries may not always be able to meet these standards 

because of a lack of training, funding, etc. For this reason international collaboration 

is imperative to create non-conflicting standards. Global participation and investment 

will help build legal and technical infrastructures worldwide, and unified standards 

encapsulated in formally proven automated tools will help to streamline international 
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investigations, for trained and untrained alike, which may ultimately have a positive 

impact locally. 

4.5 More Intelligent Automation 
Since the definition of Digital Forensic Science at the Digital Forensics Research 

Workshop in 2001, the field has grown almost as dramatically as technology itself. As 

described by Casey (2009), digital forensic science is “coming of age”, which not 

only brings about a maturation in the principal concepts of the field, but also an 

increased scrutiny against these principles and their lack of rigorous scientific 

backing. Investigators are now finding themselves overwhelmed with the scale and 

quantity of cases, along with the pressure of increasingly restrictive standards. This 

combination simply translates into a consistently increasing number of delayed or 

even neglected cases. To combat an “impending crisis in digital forensics”, Garfinkel 

(2010) claims “advanced systems should be able to reason with and about forensic 

information in much the same way that analysts do today”. This means automated 

processes that can interpret what observed information means rather than simply 

interpreting bits to human-readable information, as is currently being done. 

4.5.1 Current State of Automation in Digital Forensic Investigations 
As mentioned before, automation is already being used in digital investigations, and 

research is being done in this area. A high level of automation can already be 

achieved with evidence collection, processing, and to some extent, documentation, 

and a growing amount research is being done that attempts to automate analysis 

(Khan, Chatwin et al. 2007; Zhu, James et al. 2009; James, Gladyshev et al. 2010). 

This work tends to move from simply representing data as human-readable 

information to representing what the information means, and even reasoning about 

this meaning. Despite this, current tools still focus on converting data to information 

that an investigator can then use to manually draw conclusions. No software is 

perfect, and the ability for non-professional programmers to add on to this software 

allows even more room for error. James and Gladyshev (2010) found that only 23.3% 

of respondents verified the accuracy of examinations. From this and some of the 

points mentioned previously, it is likely that verification of the software is not always 

properly done, and sometimes not at all. Furthermore, verification of the non-

professional add-ons could be regularly overlooked. 
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Regardless, no mention is usually given to what evidence is currently being missed 

during investigations. Because of budget restrictions, some departments only have 

and know how to use one piece of “full-function” software. This attitude shows an 

over-reliance on a specific piece of software. And this is where the one challenge for 

justice comes in; when investigators are previewing a system, they must get to a point 

where they decide if the case needs further analysis or not. Since time, money and 

justice are always competing, many technicians are taught how to run automated tools 

and then analyze the results themselves. If it can be assumed that the automation built 

into these tools is reliable – keyword list search, hash search, etc. – then there are 

really two challenges that remain: a reliance on the investigator to correctly run the 

automated tool and a reliance on an investigator, with possibly no knowledge of the 

data, to interpret the presented information. 

Currently there are investigators that are not running all of the automated tools 

available to them. For example, during discussions, some examiners who make the 

decision to continue or stop the examination claimed they never use known hash 

databases in exploitation cases because hash comparisons “never find anything”, and 

is therefore not worth the additional time. Both of these are challenges of knowledge, 

and perhaps policy, which have been discussed previously, but it is also about 

investigator attitudes. These challenges appear to be partially caused by the over-use 

of automation itself, but the issue is really what is automated, where automation is 

placed, and who is using it. 

4.5.2 Opportunities with Automation in Digital Forensic Investigation 
There are a number of opportunities to a higher level of automation at the preliminary 

analysis level. These include: 

• Standardized knowledge and investigations 

Automation can be used for arduous manual tasks, such as hash matching, but 

also to encode the knowledge of trained investigators in a repeatable, verifiable 

way. “[C]omputer forensic software should ideally provide an objective and 

automated search and data restoration process that facilitate consistency and 

accuracy” (Guidance 2009). If automated first-responder processes were based on 

expert knowledge and standardized processes, higher quality first-level 
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investigations could take place than normally would with a less trained 

technician. 

Automation is also an accumulation of expert knowledge. This bank of 

knowledge applied at the first step in the investigation may lead to less missed 

evidence by encoding knowledge of obscure evidence that a normal investigator 

would not necessarily know about. Not only does automation allow for 

standardized processes in a department, but the same standard of first-level 

investigation could take place everywhere in the world regardless of investigator 

or department knowledge and budgets. This could allow for first-level digital 

investigations in countries that would otherwise not have the capability. 

Ultimately, an automated first-level analysis applied at the first-responder stage 

of the investigation may allow for a faster, higher quality, standardized preview 

with little associated training investment. 

• Department load reduction and knowledge retention 

Tasking the first responder with the automated first-level analysis benefits expert 

forensic investigators in a number of ways. First, since the preliminary analysis is 

being done in the field, less suspect machines will need to be analyzed by 

experts, as shown with current preliminary analysis techniques in (Goss 2010). 

This reduction in suspect machines will reduce the workload on the forensic lab. 

Along the same lines, every suspect machine given to the expert will definitely 

require a thorough analysis. This means that valuable expert investigators will no 

longer need to simply run automated tools, but will normally be conducting 

investigations that will require in-depth knowledge. “Field triage, evidence 

previews and even rudimentary evidence collection can free investigators and 

forensic examiners to focus on investigative and analysis activities” (HTCIA 

2010). Not only could there be a reduction of suspect devices, but potentially a 

reduction in cases that require a laboratory examination at all. Many digital 

forensic investigators as well as the Mac Forensics Lab (2010) agree that since 

the first responder is obtaining information and potential evidence, it could allow 

the first responder to immediately secure a confession based on results found on-

scene. This is, however, only if the officer understands that what he or she is 

looking at is, in fact, relevant to the case. For this, there needs to be an 

understanding about how crime is committed. 
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• Increased Training and Education 

Further, with the reduction in workload and the need for in-depth expert 

knowledge for all incoming suspect material, investigators will, potentially, have 

more time and much more need for quality digital forensic investigation 

education. Since the experts will be using high-level expert knowledge more than 

before, more information will be retained providing a higher return on investment 

and more knowledgeable, competent experts. 

4.5.3 Challenges with Automation in Digital Forensic Investigation 
The main challenge to automated tools is that they have neither a complete knowledge 

nor capacity to process this knowledge in a particular case. Because of this, if they do 

not show anything it does not mean that the evidence is not there. Ianuzzi (2007) and 

Goss (2010) believe that completely automated process cannot work in all cases; 

automated tools will miss some evidence. Missed evidence, however, is not only a 

problem of automation, but instead a problem of investigation in general. 

Investigators also cannot know how much evidence they are missing. 

To approach this challenge, it must be known how well automated tools currently 

work, and in what situations they are best suited. A method for measuring a tool’s 

performance is proposed in Chapter 5. Once a performance measure has been 

established based on the objectives of an investigation, weaknesses in automation 

may be objectively evaluated and improved upon. This must be able to include factors 

such as weight of the evidence in relation to the case, and accuracy of interpretation. 

The second challenge is of the admissibility of automatically derived evidence by a 

non-expert. The UK Forensic Regulator (2011) has outlined that forensic software 

must be validated using specified, rigorous validation methods. Validation generally 

establishes that “the validation work is adequate and has fully demonstrated 

compliance of the method with the acceptance criteria for the agreed specification; 

and the method is fit for its intended use”. Once an expert validates the tool, any user 

should then follow the tool’s defined operating procedure. A non-expert investigator 

that followed the procedure, however, may be called to give expert testimonial about 

their findings. If they cannot establish that they have complete knowledge of how 

they arrived at their conclusions, this may introduce doubt and reduce the credibility 

of evidence derived using automated processes. 



CHAPTER 4. CHALLENGES WITH AUTOMATION IN DIGITAL FORENSIC 
INVESTIGATION 

51 

4.6 Implementing Advanced Automation in Digital Investigations 
Automation may “dumb down” the profession when experts are able to rely solely on 

automated tools for all data interpretation and analysis tasks, and derived evidence is 

admitted in court without challenge. However, the technologies to be able to fully 

automate complicated evidential analysis and reasoning tasks without human 

intervention are not yet available, and courts admitting automatically extracted 

evidence without some sort of human expert verification appears unlikely. 

Automation can potentially increase the speed of the investigation process, and reduce 

the number of suspect devices in the lab, which will ultimately reduce case backlog 

while avoiding bias and prejudice. Because speed is one of the biggest concerns 

during an examination, digital investigators need to re-evaluate the examination 

process, and consider faster ways to determine if an in-depth analysis is necessary, 

such as profiling (Marrington, Mohay et al. 2010) or automatic event reconstruction 

(James, Gladyshev et al. 2010). 

Along with speed, the validity of automated processes must be formally proven. 

“Despite having a variety of practical techniques and tools, [Digital Forensics] 

provides little theoretical basis to support correctness of investigation findings” 

(Gladyshev 2004). Until the forensic community embraces formal methods, time 

consuming ad-hoc verification will continue, and the quality of the tools and 

investigations will suffer. Formal verification will also allow for the use and design of 

more efficient and intelligent forensic tools as called for by Garfinkel (2010). 

Finally, improved measurements in regards to the identification of digital evidence 

are necessary. Until baseline performance measurements are created for digital 

investigations that account for evidence identification in the context of the case, 

performance of highly automated tools will unverifiable, and perhaps hinder 

development.  

4.7 Summary 
This chapter discussed some issues with the implementation and acceptance of 

automation in digital investigation, and the implications for human investigators. 

Attitudes towards the use of automation in digital forensic investigations have been 

examined, as well as the issue of digital investigators’ knowledge acquisition and 

retention. The argument was made for a well-planned, careful use of automation 
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going forward that allows for a more efficient and effective use of automation in 

digital forensic investigations while at the same time attempting to improve the 

overall quality of expert investigators. 



 

 

Chapter 5 

Measuring the Accuracy of Investigations 
Following from the previous chapter, one identified challenge is how to objectively 

compare the accuracy of highly automated analysis tools to real digital forensic 

experts. This chapter introduces a method based on information retrieval techniques 

to measure and compare the accuracy of tools, investigators and investigation 

processes. Related work is explored, and an argument is given why objective 

measurement of the accuracy of digital forensic investigations is necessary. A simple 

method of accuracy measurement is proposed as a starting point, and a brief case 

study is given to illustrate the proposed method. 

5.1 Measuring the Accuracy of Analysis 
In digital forensics, the verification and error rates of forensic processes are a 

common topic. This is mostly due to the evidence admissibility considerations 

brought on as a result of Daubert v. Merrell Dow Pharmaceuticals, 509 US 579 

(1993). “The Daubert process identifies four general categories that are used as 

guidelines when assessing a procedure” (Carrier 2003). These are Testing, Error Rate, 

Publication and Acceptance. 

Tools are commonly tested and organizations such as the National Institute of 

Standards and Technology (NIST) have created test methodologies for various types 

of tools which are outlined in their Computer Forensic Tool Testing (CFTT) project 

("Computer Forensics Tool Testing Program" 2011). But beyond testing, error rates 

for tools are not often calculated (James and Gladyshev 2010; Lyle 2010). The 

argument has been made that a tested tool with a high number of users must have a 

low error rate because if there was a high rate of error, users would not use the tool 

(Guidance 2009). So far this argument appears to be widely accepted, however 

Carrier (2003) submits that “At a minimum this may be true, but a more scientific 

approach should be taken as the field matures”. Furthermore, Lyle (2010) states that 

“[a] general error rate [for digital forensic tools] may not be meaningful”, claiming 

that an error rate should be defined for each function. Because of this, and the lack of 

Law Enforcement’s (LE) time and resources, verification of a tool rarely passes 

beyond the testing phase of the Daubert process. The same can also be said for the 

investigator’s overall examination process. A Standard Operating Procedure (SOP) 
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should dictate the overall examination process (Jones and Valli 2008). Validation of 

the overall process is commonly done by peer review, but according to James and 

Gladyshev (2010) peer review does not always take place. None of the survey 

respondents mentioned any form of objective measurement of accuracy for the 

examination process. There has also been little research in the area of overall 

examination accuracy measurement. 

Forensic examinations are a procedure for which performance measurement, 

specifically the measurement of accuracy, is not being conducted, due to concerns 

about the subjectivity, practicality and feasibility. Error rates are created for 

procedures, tools and functions to determine their probability of failure, and also as a 

measure for which other methods can be compared against. “…[E]rror rates in 

analysis are facts. They should not be feared, but they must be measured” (Palmer 

2002). This chapter is a brief introduction to the problem of accuracy measurement in 

subjective digital forensic analysis, why it is needed, and how it may improve not 

only current analysis techniques, but also allow for a baseline with which to compare 

new techniques. 

5.2 Related Work 
Many areas attempt to measure the accuracy of their processes. In Crawford v. 

Commonwealth, 33 Va. App. 431 (2000) - in regards to DNA evidence - the jury was 

instructed that they “…may consider any evidence offered bearing upon the accuracy 

and reliability of the procedures employed in the collection and analysis…” and that 

“DNA testing is deemed to be a reliable scientific technique…”. Although the 

technique may be reliable “occasional errors arising from accidental switching and 

mislabeling of samples or misinterpretation of results have come to light…” 

(Thompson 2002). Furthermore, the relatively recent “Phantom of Heilbronn” 

incident has led to questions of not just internal, but also the external processes that 

may ultimately effect evidence (Obasogie 2009; Yeoman 2009). While the DNA 

testing technique itself has been deemed to be reliable, erroneous results are still 

possible due to human error. Digital examinations are not much different in this 

regard. While a tool may be able to accurately display data, that data is not evidence 

until an investigator, or a human, interprets it as such. No amount of tool testing can 

ensure that a human interprets the meaning of the returned results correctly. The law 

in a region being measured may be used to attempt to objectively define the 
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correctness of an investigation; however, correctness in an investigation is somewhat 

vulnerable to the subjective conclusions of the investigator and their biases. 

Information Retrieval (IR) is one area where accuracy measurement is paramount. 

Much work has been done in the area of IR, and IR accuracy measurement techniques 

have been applied to forensic text sting searching (Beebe and Clark 2007), document 

classification (de Vel 2004), and even fragmented document analysis in digital 

forensics (Li, Wang et al. 2006). The focus, however, has been on the accuracy 

measurement of particular techniques or tools within the digital examination process, 

and not for the examination process itself. 

5.3 Objective Measures of Analysis Performance 
At present, the efficacy of digital forensic analysis is, in effect, a function of the 

duration of an examination and of the evidence it produces. These factors force 

investigators to increase their use of automated tools, and explore autonomous 

systems for analysis (Kim, Kim et al. 2004). As previously identified, there are 

several weaknesses with automated tools in digital investigations today. Many 

automated digital forensic tools focus on inculpatory evidence, such as the presence 

of images, leaving the search for exculpatory evidence to the investigator. Also, many 

investigators are not comparing their automated tools to a baseline performance 

measure, such as other similar tools or the results of a manual investigation, which 

could lead to missed evidence and incomplete investigations. Tools are also not the 

only component in a digital forensic analysis. Even if all data is displayed correctly, 

the investigator must then interpret the data correctly. As such, a system of accuracy 

measurement capable of considering both tools and investigators is needed. 

Two simple but informative metrics used in information retrieval systems are 

precision and recall (Russell and Norvig 2009). We propose that the IR performance 

measures of precision and recall can be applied to the analysis of digital forensic 

examinations. An overall performance measure relative to both the precision and 

recall, called an F-measure, may be used as the score for overall accuracy of the 

examination. This measurement will help to identify problem areas over time, that 

may lead to more focused training, smarter budgeting, better tool or technique 

selection and ultimately higher-quality investigations.  
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The use of precision and recall is suggested rather than current percentage error 

methods normally employed in digital forensic tool testing. Normally, percentage 

error is used to determine the error of a particular function of a tool. While percentage 

error could be used to evaluate the overall error of an investigator conducting an 

investigation process with various tools, there is no clear indication where error is 

being introduced. Precision can be thought of as the investigator’s (or automated 

tool’s) ability to properly classify a retrieved object. Recall can be thought of as the 

investigator’s (or automated tool’s) ability to discover and retrieve relevant objects. 

These scores can then be used to calculate overall accuracy, which can allow not only 

identification of weaknesses over time but also whether problems are arising from 

classification or recall challenges. 

By measuring tools, investigators and laboratories, investigators can get feedback on 

performance, lab managers can objectively evaluate investigators’ usage of tools, 

trainers can tailor courses to the needs of specific departments, trainees can more 

effectively choose courses to suit their weaknesses, and customers can have an 

objective measure with which to compare digital forensic laboratories. 

5.3.1 Digital Analysis 
Evidence, as defined by Anderson and Twinning (1998), is “any fact considered by 

the tribunal as data to persuade them to reach a reasoned belief [of a theory]”. Digital 

forensic analysis attempts to identify evidence that supports a theory, contradicts a 

theory, as well as evidence of tampering (Carrier 2003). If an investigator focuses 

only on inculpatory evidence, it is possible that they could miss a piece of evidence 

that may prove the innocence of the suspect, and vice versa. Current digital forensic 

tools help an investigator to view objects that may have possible evidential value, but 

what that value is – inculpatory, exculpatory, tampering, or nothing – is determined 

manually by the investigator. The investigator must take the type of case, context of 

the object and any other evidence into account. This means that the identification of 

evidential objects strongly relates to the knowledge of the investigator. For example, 

in a survey, 67% of investigators claimed only a basic familiarity with the Microsoft 

Windows Registry (James 2010). If an investigator has little or no knowledge of the 

Microsoft Windows Registry, he or she may not consider it as a source of evidence. In 

this case the accuracy of the tool may not be in question, but instead the accuracy of 

the process or investigator. In digital examinations, to get true error rates for the 
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investigation process, the accuracy of both the tool and investigator must be 

measured. “Although increased rigor can be viewed initially as troublesome, its 

benefit to the collection analysis and presentation of scientific evidence will result in 

much higher confidence levels associated with the information presented to all 

decision-makers, including judges and juries” (Palmer 2002). 

5.3.2 Precision and Recall 
Some areas of computer science, such as information retrieval, use methods to 

measure the accuracy of the information that is retrieved. Two commonly used 

metrics are precision and recall. As defined by Russell and Norvig (2009), “precision 

measures the proportion of documents in the result set that are actually relevant… 

[and] recall measures the proportion of all the relevant documents in the collection 

that are in the result set”. Manning, Raghavan et al. (2008) define the calculation of 

precision and recall mathematically using the following formulas: 

 

Precision =   
#  relevant  items  retrieved

#  retrieved  items = 𝑃(relevant|retrieved) 

OR 

Precision =
|{relevant  items} ∩ {retrieved  items}|

|{retrieved  items}|  

 

Recall =
#  relevant  items  retrieved

#  relevant  items = 𝑃 retrieved|relevant  

OR 

Recall =
|{relevant  items} ∩ {retrieved  items}|

|{relevant  items}|  

 

Consider a search engine, for example. When a user enters a query, given enough 

time, a document containing exactly what the user was looking for could be returned 

from the set. But if the search had a high level of precision, then the number of 

documents returned (recalled) would be low and would take more time. Search 

engines, however, attempt to return results as quickly as possible. Because of this, 
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precision is reduced and a higher number of relevant, but possibly less exact, 

documents are returned. 

An accuracy measure relative to both the precision and recall, called an F-measure 

(F), may be used as the score for overall accuracy of the measured query. The 

equation for calculating the F-measure is defined by Russell and Norvig (2009) as: 

𝐹 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 

5.3.3 Accuracy of Analysis 
Precision and recall may also be applied to digital forensic analysis. This will allow 

departments to determine baseline accuracy figures for their forensic analysis 

processes. A digital examination can be considered like a query. Digital investigators 

are asking a question, and are returning the previously defined types of evidence in 

accordance with that question, which are then verified by a court. The evidence found 

(recalled) can be used to calculate the accuracy of the examination as compared to a 

baseline standard. For comparison, a baseline of correctness, or ‘gold standard’, must 

be established. In digital forensics, peer reviewed in-depth examination of a suspect’s 

system by an expert is the level of examination that is accepted for use in court. This 

level of examination may not accurately identify all potential evidential artifact, but is 

presently the most accurate and comprehensive examination method that is normally 

accepted. An artifact is defined as information that supports or denies a hypothesis. 

The results of an examination (a collection evidential artifacts) are evaluated for 

admissibility by the court, resulting in a possible subset of artifacts accepted as 

evidence. From this, the ‘gold standard’ will be defined as the resulting set of 

evidentiary artifacts returned during a peer-reviewed examination that are accepted 

as admissible evidence in court. With this definition, the gold standard is set at the 

level of a peer-reviewed human investigation. Using this standard, the results of an 

examination from another human investigator using particular tools or processes may 

be objectively compared. Likewise, autonomous digital forensic analysis systems may 

also be measured against the gold standard, and compared to other processes. 

Accuracy of analysis for a certain process, investigator or autonomous system can 

also averaged over time to evaluate trends. For example, as software used for analysis 

becomes out of date, new evidential data sources may exist that the software cannot 
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analyze. By measuring the performance of the process over time, the accuracy may 

decrease, signaling either an issue with the software or the investigator’s knowledge. 

Since the accuracy of tools using precision and recall has been discussed in other 

works, this paper will focus on a method for investigator and analysis phase accuracy 

calculation. 

5.3.3.1 Grading the Investigation Process 
In digital forensic analysis, the ideal investigator performance is a high precision (no 

false positives), and a high recall (no false negatives); all found as fast as possible. 

Essentially, requirements for an investigator are similar to the requirements for an 

analysis tool, as described by Carrier (2002). An investigator that is comprehensive, 

accurate and whose work is deterministic and verifiable could be considered 

competent. This means that both high precision and high recall – high accuracy – is 

equivalent to high performance. This work does not take the weight of artifacts into 

account. That is, no one artifact is considered any more important than any other. By 

calculating the investigation process’s precision and recall for an analysis, compared 

to the results that were admitted in court, the resulting accuracy measure may be 

calculated. 

Consider an example where the results of a particular process discovered 4 

inculpatory artifacts and 3 exculpatory artifacts for a total of 7 artifacts. During a 

peer-reviewed examination, the gold standard found the same 4 inculpatory artifacts, 

along with 5 others, for a total of 9 inculpatory artifacts. The gold standard found just 

one exculpatory artifact, which corresponded to one of the three identified by the 

process. It did not conclude that the other 2 objects identified by the process were in 

fact exculpatory artifacts. From this, the process’ ability to discover evidential 

artifacts can be measured against the gold standard using precision, recall and the F-

measure, where these performance measures are based on the presumption that the 

gold standard classification corresponds to the ground truth: 

𝑃 =
#  𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡  𝑖𝑡𝑒𝑚𝑠  𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

#  𝑖𝑡𝑒𝑚𝑠  𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 =
5
7 = 0.71 
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Recall (R) is found to be: 

𝑅 =
#  𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡  𝑖𝑡𝑒𝑚𝑠  𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

#  𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡  𝑖𝑡𝑒𝑚𝑠 =
5
10 = 0.5 

 

Finally, the F-measure (F) is found to be: 

𝐹 = 2 ∙
𝑃 ∙ 𝑅
𝑃 + 𝑅 = 2 ∙

0.71 ∙ 0.5
0.71+ 0.5 = 0.59 

 

In this case the process’s precision is 0.71 or 71%. However, if the process led to the 

discovery of only one artifact, and that artifact was of evidentiary value, then the 

process’s precision would be 100%. In digital investigations, it may be possible that 

one piece of evidence is all that is necessary, but in many cases supporting 

information may need to be provided. This is why recall is important. A high 

precision with a low recall means that the process is missing evidence. In the current 

example the recall is 0.5 or 50%. This means that the process missed half of the 

possible artifacts. The F-measure is the relative combination of the precision and 

recall.  In this case, the process scored 0.59 or 59%. This is the process’s accuracy 

score for this analysis. 

By measuring Precision, Recall and F-measure over time, departments can observe 

trends in the process, as well as calculate overall performance. Consider the 

imaginary example shown in Table 5.1. By examining the F-measure, it can be seen 

that the process’s accuracy is decreasing (Figure 5.2). It can also be seen that the 

process is consistently missing almost half of the relevant artifacts. By using this 

method, it becomes easy to see if there are problem areas, and if there are issues that 

need to be addressed. 
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Table 5.1 Fictional example calculating Precision, Recall and F-measure for an 
investigator over time 

 Precision Recall F-measure 

Analysis 1 0.71 0.5 0.59 

Analysis 2 1 0.6 0.75 

Analysis 3 1 0.5 0.67 

Analysis 4 0.7 0.3 0.42 

Average  0.85 0.48 0.61 

 

 

Figure 5.1 Analysis accuracy over time compared to the gold standard 

5.3.3.2 Other Levels of Forensic Examination 
Casey, Ferraro et al (2009) describe multiple layers of digital forensic examination to 

help handle an ever-increasing amount of data needing to be analyzed. The use of a 

multiple layer investigation model has been confirmed by James and Gladyshev 

(2010), where 78% of respondents claimed to use some sort of preliminary analysis. 

Most forms of preliminary analysis involve some form of automation, and much of 

the time if a preliminary analysis is done, the decision to continue or stop the 

examination will be made based on what is found – or not – with these less in-depth 

processes. It also appears that in all cases if anything suspicious is found during a 

preliminary examination, then an in-depth analysis will normally take place. Current 

processes, such as triage, have been shown to help reduce the number of suspect 

machines needing an in-depth examination (Goss 2010); however, triage and highly 
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automated preview examinations must not be as effective as an in-depth analysis, or 

automated processes would likely be used to conduct a full analysis. The issue then is 

that decisions to not continue analysis are being made based on a minimum amount of 

information. Also, investigators conducting preliminary analyses do not know what is 

being missed since they are not conducting a full examination. 

“To reduce the incidence of incorrect conclusions based on unreliable or inaccurate 

data it is necessary to quantify uncertainty and correct for it whenever possible” 

(Casey 2002). The proposed method to measure accuracy may be applied to all layers 

of examination. If a highly automated tool, such as a triage solution, is being used to 

make decisions about a system, an F-measure can be calculated for the solution or 

process in the same way as the described, and compared to the gold standard. By 

doing this comparison departments can determine the limitations and benefits of their 

preliminary analysis techniques and particular tools, resulting in more informed 

decisions about their overall analysis process. 

5.4 Case Study 
In this section, two cases are given where the proposed accuracy measurement 

method is used. The first case will use data where an investigator was testing a triage 

tool against a full human investigation. The second case involves five investigators 

separately testing a different preliminary analysis tool. Comparisons between the 

investigators, as well as the tools are then evaluated. 

5.4.1 Case 1 
The following example case has been adapted from the work of Goss (2010), where 

the accuracy of a newly implemented triage process is being compared to a human 

investigator conducting a full analysis on the given media. In this case the accuracy of 

automated triage analysis will be compared to the gold standard set by an in-depth 

manual investigation based on the analysis of a data set with an unknown ground 

truth. In other words, the automatic classification of objects as having evidential value 

is being compared to the human gold standard. Five automated triage examinations (5 

different media) are given in Appendix A, with their precision, recall and F-measure 

calculated. In this case, the human investigator validated the gold standard. For this 

reason, only false positives, as compared to the gold standard, with no further 

validation, are given. Table 5.2 gives a summary of the examination accuracy results. 
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Table 5.2 Summary of examination accuracy results using precision and recall to 
calculate the overall F-measure 

 Precision Recall F-measure 

Analysis 1 0.67 0.33 0.44 

Analysis 2 0.00 0.00 0.00 

Analysis 3 1.00 1.00 1.00 

Analysis 4 0.07 0.53 0.12 

Analysis 5 0.15 0.12 0.13 

Average 0.38 0.40 0.34 

 

From Table 5.2, the accuracy of the triage analysis conducted varies greatly. By 

observing these fluctuations, their cause may possibly be determined. Analysis 2, for 

example, had poor results because triage is unable to take the context of the case into 

consideration, and out of context the results returned by a quick triage examination 

might be suspicious. Alternatively, analysis 3 was extremely accurate because all 

discovered evidence was found using a known-bad hash database, and only 

previously known artifacts (artifacts that were in the hash database) were on the 

suspect system. Overall it can now be said that triage is good for finding known, or 

“low hanging”, evidence but it is not nearly as effective as an in-depth examination by 

the investigator. 

Using this method, it is shown that the overall precision of the implemented triage 

solution in this particular case study is 38%, and that it is missing 60% of the possible 

evidentiary artifacts as compared to the gold standard. The overall accuracy ‘grade’ 

for the implemented triage analysis is 34%. From here, this measurement can be used 

as a baseline for improvement, or to focus when triage should and shouldn’t be used. 

Also, when using this method it becomes clear in which situations triage is missing 

evidence. With this knowledge, the triage process could possibly be changed to be 

more comprehensive. The triage process can now also be accurately compared to 

other examination processes, such as an investigator’s performance, or other triage 

solutions.  
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5.4.2 Case 2 
The second case involves five pieces of suspect media that each received a full expert 

digital forensic analysis, and had reports written as to the findings of all evidential 

artifacts. Each case was an investigation into possession of suspected child 

exploitation material. After the media received a full analysis, five preliminary 

examiners conducted a blind analysis on each piece of media using a locally 

developed preliminary analysis tool. One preliminary examiner (examiner 1) had 

experience conducting in-depth digital forensic investigations, while the remaining 

investigators had no experience with in-depth digital forensic analysis. The goal was 

to determine if decisions to discard media that did not contain illegal material could 

accurately be made without a time-consuming full examination. To test this method, 

the decision error rate was examined as well as the preliminary analysis precision rate 

using the described method to attempt measure the precision of both the tool and the 

examiner. The results of each preliminary analysis are given in Appendix B. 

In the context of this case study, false positives are defined as objects identified as 

suspicious, but are in fact not illegal according to the gold standard. False negatives 

are defined as objects that are illegal that were not identified according to the gold 

standard. It is important to note that in a preliminary analysis it is acceptable – and 

likely – to have false positives in both the object identification and decision for 

further analysis. This process, however, must have a false negative rate of 0 for the 

decision for further analysis, meaning that exhibits with illegal content are always 

sent for further analysis. This process does not necessarily need a false negative rate 

of 0 for illegal object identification, since full illegal object identification is the 

purpose of the full analysis. 

Five test cases were given where the suspect media with unknown ground truth 

received a full manual analysis, from which a report of findings was created. This 

report is considered the gold standard for classification of objects as illegal or 

unrelated. All cases were based on charges of possession of child exploitation 

material. Out of the five suspect media, three (60%) were found to not contain illegal 

content. Two exhibits (40%) were found to contain illegal content, most of which 

were illegal images. 
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A preliminary examiner then used an automated tool for object extraction purposes, 

and manually classified objects as illegal or unrelated. Table 5.3 gives the overall 

results of the preliminary examiner’s further analysis decision and accuracy rates, 

Table 5.4 shows the average artifact identification error rate per preliminary examiner 

compared to the gold standard, and Table 5.5 displays the average accuracy rate based 

on artifact identification per investigator compared to the gold standard. 

Table 5.3 Further analysis decision false positive and false negative error rates per 
preliminary examiner 

Media Further Analysis Decision Error Rate 

Examiner Num. of False 
Positives 

False Positive 
Error 

Num. of False 
Negatives 

False Negative 
Error 

Examiner 5 2 .4 0 0 

Examiner 4 2 .4 0 0 

Examiner 3 2 .4 0 0 

Examiner 1 1 .2 0 0 

Examiner 2 2 .4 0 0 

 
Table 5.4 Average artifact identification error rate per preliminary examiner 

Average Object Identification Error Rate 

Examiner Ave. False Positive Error Ave. False Negative Error 

Examiner 5 .4 .26 

Examiner 4 .31 .13 

Examiner 3 .35 .02 

Examiner 1 .21 .24 

Examiner 2 .31 .09 
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Table 5.5 Average accuracy rate based on artifact identification per preliminary 
examiner 

Average Accuracy Rate 

Examiner F-measure 

Examiner 5 .35 

Examiner 4 .57 

Examiner 3 .80 

Examiner 1 .64 

Examiner 2 .55 

Unit Ave. .58 

 

From the Table 5.3, it is shown that no preliminary examiner falsely excluded suspect 

media containing illegal material. This means that all exhibits containing illegal 

material would have received an in-depth analysis. Also, Table 5.3 shows that the 

preliminary examiner with more experience – Examiner 1 – had a lower false positive 

rate in the decision making process. This is presumably due to a better ability to 

categorize and differentiate between illegal and borderline content. 

From Table 5.4, it can be seen that false positive rates for object identification were 

relatively high. This was an expected outcome since the preliminary examiners are 

not capable of definitely categorizing borderline illegal content. A higher false 

positive rate may also indicate the preliminary examiners being overly cautious. 

Also from Table 5.4, the false negative rate for object identification is somewhat high. 

This is also expected since preliminary examiners are not conducting a full analysis. 

Object identification false negatives must be compared with the results in Table 5.3. 

When comparing object identification to the decision process, missing some of the 

illegal material did not have an effect on the decision process. This is because if there 

are suspect objects, there are likely multiple sources that are suspicious. However, this 

correlation should be continuously monitored. 

5.4.3 Evaluation 
Table 5.5 is the calculated average accuracy rate based on automatic object 

identification and manual classification. This is a metric that may be used for 
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measurement and comparison in the future to ensure continued quality, where recall 

correlates to the ability of the tool to return related objects, and precision correlates to 

a preliminary examiner’s ability to correctly categorize returned objects. If each 

preliminary examiner dropped in accuracy, it may indicate an issue with tools not 

extracting the required objects, or possibly an issue with the training of the 

preliminary examiner. 

The calculated average accuracy rates may also be used to compare two analysis 

methods. As an example, consider Table 5.2, where the average accuracy of the Case 

1 triage solution compared to the gold standard (full analysis) was .34 (34%). If this is 

compared to the average calculated accuracy – .58 (58%) – of the (mostly untrained) 

preliminary examiners in Case 2, it can be seen that the preliminary examiners in 

Case 2 are approximately .24 (24%) more accurate than the Case 1 triage solution for 

making similar decisions. Other metrics, however, should also be considered, such as 

the time for processing and analysis. For example, the Case 1 triage solution is meant 

to run on-scene in approximately 2 hours or less, not including analysis. The 

preliminary analysis solution in Case 1 is designed to be ran in a laboratory from 24 

to 48 hours, depending on the size of the suspect media. Because of this, improved 

accuracy may be expected, but at the cost of time. 

5.4.3.1 Limitations 
There are two main limitations to the proposed method, the greatest being the 

definition of the gold standard. The gold standard, as defined in this paper, requires an 

expert to verify the findings of a given analysis. While such verification is sometimes 

performed as a matter of course, not all organizations can afford to duplicate efforts, 

even on a random sample. Furthermore, it should be noted that a gold standard is only 

as good as the experts creating it. If a sub-par examiner is setting the standard, the 

results of measurement may look very good even for poor examinations. 

The second limitation is that the accuracy measurement cannot be used when no 

illegal artifacts were found in the full analysis. This method is only useful in 

measuring when some objects – either inculpatory or exculpatory – are discovered by 

the gold standard. 
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5.5 Summary 
In this chapter a previously identified issue is how to objectively compare the 

accuracy of highly automated analysis tools to real digital forensic experts has been 

explored. A method based on information retrieval techniques to measure and 

compare the accuracy of tools, investigators and investigation processes has been 

discussed. Related work was explored, and an argument was given why objective 

measurement of the accuracy of digital forensic investigations is necessary. A simple 

method of accuracy measurement has been proposed as a starting point, and a very 

brief case study was given to illustrate the proposed method. 



 

 

Chapter 6 

Automatic Event Reconstruction 
This chapter examines the need for automatic event reconstruction (AER) in digital 

forensic investigations, and explores previously proposed methods. Current issues 

with automatic event reconstruction are given, as well as practical needs that must be 

met before automatic event reconstruction can be of practical value. This chapter 

concludes by introducing the objective and basic ideas of this work. 

6.1 State of the Art 
Several methods have been developed which attempt to derive the happened events 

from available data. The following is a review of various previously proposed 

methods that directly and indirectly relate to the ideas presented in this work. 

6.1.1 Traditional Timestamp Analysis 
In traditional digital forensic investigations, timestamp information is often used in 

the analysis phase. Timestamps associated with logs, files, and even Windows 

Registry entries give investigators clues about when events took place. Various tools 

exist to arrange detected timestamps in chronological order, creating a timeline of 

available modification, access and creation times (Buchholz 2004; Gudjonsson 2010). 

Timelines allow for a quick overview of the creation, access and modification of data 

on a system that can be easily restricted to a certain period of time. The investigator 

may then focus in on data specific to the user to determine items that may need 

further investigation. 

Koen and Oliver (2008) submitted a method of file timestamp analysis, stating that 

there is a relation between an ‘action’ – such as opening an application – and the 

update of related file timestamps. This relation may allow an investigator to determine 

which application must have been executed. 

Event data is generated when a significant digital event occurs. Although the 

generated event data is of little value when viewed independently, collectively 

event data can produce information that can help investigators to deduce 

relationships between events to produce abstract views of the evidence at hand. 

While a relationship between an action and the update of file timestamps was loosely 

defined, no method was given for determining this relationship. Also, how the 
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collective data produces helpful information is not immediately clear beyond 

reverting to the previously described timeline-analysis techniques. Overall, this work 

showed that a relation exists between executing an application and the subsequent 

updating of related file timestamps. 

This relation, however, may be inaccurate. For example, Willassen (2008b) states that 

the “use of timestamps as evidence can be questionable due to the reference to a clock 

with unknown adjustment”. Further, timestamps available in a suspect system could 

be altered by a malicious user (Hilley 2007). Several methods to verify the 

consistency and validity of timestamp information have been suggested (Willassen 

2008b; Parsonage 2009; Zhu, James et al. 2010). Willassen (2008b), for example, 

proposed a method based on clock hypothesis testing. This method seeks to create 

models of system timestamp update patterns that can be tested against hypothesis 

about the state of the system clock. An ‘action sequence’ is defined where one or 

more actions is related in time to the next action in the sequence. A ‘timestamping 

order’ is the order in which timestamps must have been changed in relation to each 

other. Timestamping orders must have been created by at least one action sequence. If 

no action sequence exists for the particular timestamping order, then the timestamping 

order is inconsistent with the system’s timestamp update model. Figure 6.1 shows 

possible timestamping orders of modified (tm), accessed (ta) and created (tc) 

timestamps, and the associated action sequence that could have created such a 

timestamping order. Hypotheses about the state of the system clock, such as an 

alteration of the time zone, can then be tested against the derived model to determine 

if observed timestamp information is consistent with the model; either supporting or 

refuting the hypothesis. 
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Figure 6.1 Derived timestamping order logic in Windows XP/NTFS. Willassen, S. Y. 
(2008b). Timestamp evidence correlation by model based clock hypothesis testing, 
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications 

Engineering). 

While the clock hypothesis method attempts to determine the consistency of 

timestamp updates in a system, timestamps could be maliciously altered11 in a way 

that is still consistent with the system. This still leaves questions about the reliability 

of timestamps that have yet to be resolved. 

Along with reliability issues, extracting knowledge from collections of timestamps 

still requires a knowledgeable expert to manually reconstruct the events from the 

given information. To this end, pre-incident system monitoring methods have been 

proposed to attempt to automate the reconstruction of events.  

                                                
11 Programs exist that allow a user to change any or all file timestamps. For more 
information see: Foster, J. C. and V. Liu (2005). Catch Me If You Can: Exploiting 
Encase, Microsoft, Computer Associates, and the rest of the bunch... Black Hat USA 
2005. Las Vegas, USA. 
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6.1.2 Pre-Incident System Monitoring 
Some methods of in-depth automatic event reconstruction have been proposed, such 

as process coloring (Jiang, Buchholz et al. 2007) and backtracking (King and Chen 

2005). The method proposed by King and Chen (2005) records “objects and 

dependency-causing events” before, during and after an incident. For example, if a 

process is created that updates a file, a dependency between the process and the 

update of the file is recorded. The logged dependency relationships between objects 

are then presented in a dependency graph (Figure 6.2). 

 

Figure 6.2 Logged object and dependency-causing events (a) graphed as a 
dependency graph (b). King, S. T. and P. M. Chen (2005). "Backtracking intrusions." 

ACM Transactions on Computer Systems (TOCS) 23(1): 51-76. 

Once suspicious activities have been detected, the created dependency graph can then 

be back-traced from the identified trace (such as a process or altered file) to determine 

what operations have acted upon this object. Since all operations have been recorded, 

suspicious operations that interacted with the objects in question can be easily 

identified, reconstructed and acted upon. 

There are several issues with pre-incident monitoring analysis. First, this method can 

only be used in controlled environments. A system administrator who is security 

conscious would need to implement logging before an incident occurred. Home users 

generally do not host critical services or complex configurations, so comprehensive 



CHAPTER 6. AUTOMATIC EVENT RECONSTRUCTION 

73 

pre-incident monitoring would not normally be found in a home or small business 

network. Along the same lines, criminals are unlikely to install a monitoring program 

on their own computers without also knowing how to hide their own activities. 

The second issue with pre-incident monitoring is the resources consumed. Although 

storage space has dramatically decreased in cost, rigorous logging of many machines 

can consume prohibitively large amounts of storage per day, depending on the 

verbosity. On servers hosting critical services, security measures that do not increase 

processing and system load will be preferred over resource intensive monitors. While 

some organizations may be able and willing to provide complete monitoring for event 

reconstruction purposes, this level of pre-incident monitoring will generally be too 

cost and resource intensive for most organizations. 

Given the issues with pre-incident monitoring, rigorous logging of the operation of 

the system will likely be unavailable. Instead, investigators normally have only 

information relating to the final state of the system before it was shut down. Because 

of this, methods are needed for the post-mortem analysis of a system that derives 

knowledge of the operation of the system from a limited amount of data. 

6.1.3 Finite State Machine Analysis 
Finite State Machine Analysis is a method to formally represent a system and analyze 

certain scenarios based on the formal model. Several works have proposed modeling a 

computer system formally as a finite state machine (FSM) (Gladyshev and Patel 

2004; Gladyshev 2005; Carrier 2006b; Arasteh, Debbabi et al. 2007), which allows 

event reconstruction to be reduced to a state-space exploration problem. 

For example, in Gladyshev and Patel (2004) a system is modeled as an FSM where all 

possible states of a system correlate to the states of the FSM, and all possible events 

are modeled as transitions from one state to another. In this work, Gladyshev and 

Patel define a computation as a non-empty sequence of state transitions (Figure 6.3). 

A ‘run’ of a computation is defined as a “possibly empty sequence of finite 

‘computations’ in which the next computation is obtained from the previous 

computation by discarding its first element”. 
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Figure 6.3 Run of a computation defined as a Finite State Machine. Gladyshev, P. 
and A. Patel (2004). "Finite state machine approach to digital event reconstruction." 

Digital Investigation 1(2): 130-149. 

Next, the concept of witness statements is presented, where ‘observations’ of some 

property of the system are explained as a run restricted in length. An ‘observation 

sequence’ is a chronological sequence of observations. These observation sequences 

are combined to form ‘evidential statements’, which are used to restrict the possible 

computations of the system model in the past. 

Finally, investigative hypotheses can also be modeled as observation sequences. If 

there are explanations that agree with both the evidence and the hypothesis, then the 

hypothesis may be true. If there are no explanations that agree with both the evidence 

and the hypothesis, then the hypothesis must be false. 

This method then accounts for all possible state transitions that could have occurred to 

reach the final observed state. This is beneficial from a defensive point of view, where 

alternative explanations of the final state may also be found. 

This work was extended in James, Gladyshev et al. (2010) where a system is modeled 

as a deterministic finite automaton (DFA) that accepts symbolic encodings of 

computations of the finite state machine model of the system. Witness statements, 

again, are restrictions on the computations of the system, and can be modeled as DFA 

representing the patterns over the sequences of transitions. Automata intersection can 

then be used to construct an automation that represents the intersection of the two 

sets. In other words, a restriction on the possible computations of the system. 
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When a witness – or suspect – puts forward a statement, this statement may also be 

modeled as an automaton that restircts the possible computations. When this and other 

witness statements are interescted with the system model, if intersection does not 

result in the final observed state, then the statement must be false. If the final 

observed state is present then the witness statement is possible. 

State machine analysis provides objective reasoning based on the generated formal 

model, does not need to be installed before an incident occurs, and allows for the use 

of more types of information than just logs or timestamps. One major benefit of the 

proposed methods is that they account for all possible events. This, however, is also a 

weakness.  

The issue with the described FSM and DFA methods is that the formal representations 

of real-world models are extremely complicated with an extremely large state-space. 

By allowing for all possibilities, the state space becomes too large for practical 

computation. The resources used to model even the simplest real-world systems 

would be intensive, making these methods currently impractical for real-world use. 

6.1.4 Inconsistency Checking 
Stallard and Levitt (2003) proposed a method of event reconstruction using semantic 

integrity checking. The method seeks to determine invariant relationships “between 

objects that holds true for [a] system operating in an authorized state”. After invariant 

relationships are found, contradictions to the invariant relationships can be flagged as 

suspicious and in need of further examination as to the cause of the inconsistency. 

Using this method, data that conforms to known invariant relationships may be 

discarded, leaving only suspicious exceptions. Figure 6.4 is an example of such a 

decision tree “with the goal of determining the set of users who may have changed the 

contents of a file”. This process was automated by creating an expert system whose 

knowledge base is comprised of invariant relationships in terms of observable objects 

in a system, hypotheses of possible reasons for contradiction, and the “mode” to 

collect evidence to support a given hypothesis. Hypotheses for the reason of the 

contradiction may then be tested. “For a given set of facts, the hypothesis with the 

most supporting evidence could be pursued until evidence is found that refutes its 

assertion, or the investigator determines the purposes have been met.”  
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Figure 6.4 Decision tree for a consistency-checking expert system. Stallard, T. and K. 
Levitt (2003). "Automated analysis for digital forensic science: Semantic integrity 

checking." 

Similarly, the use of the logic of invariant relationships used in the reconstruction of 

events in the event time bounding method proposed by Gladyshev and Patel (2005). A 

method for checking the consistency of events from data stored in the Microsoft 

Windows Registry based on event time bounding was proposed in Zhu, James, et al. 

(2010). This method defines an event as a modification to a Registry key. Windows 

Registry keys have an associated ‘modified’ timestamp. The method seeks to extract 

events and their associated timestamp information from the Registry, and check the 

consistency of these events based on the invariant relation between the events. Events 

are split into two categories; extracted and inferred events. An extracted event is one 

whose evidence of the event happening is directly observable. For example, if a 

Registry key and its associated timestamp information exist, then an event may be 

extracted directly from the observable data. An inferred event is an event that may be 

extracted based on observed data, but whose timestamp information is unknown or 

otherwise unavailable. 
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Once events have been extracted, events are ordered in time. Inferred events with no 

associated timestamp information are time-bound by events with a known 

relationship. This method relies on the redundancy of data stored within the Windows 

Registry. Multiple data sources may allow for the extraction of information about the 

same event. If the same event information may be extracted from different data 

sources, or if an invariant ordering of events must occur, then inconsistencies may be 

found. Finding inconsistencies may lead to the reconstruction of more events, or at 

least hypothetical events, which can help an investigator to understand what events 

were likely to have happened to cause the inconsistency. 

A formal method of inconsistency checking for digital evidence has been proposed by 

Gladyshev and Enbacka (2007), where a system is modeled as a state-machine. 

Models of consistency for this state-machine are formally defined and verified using 

form B Method, which was originally a method of formally developing programming 

language code from specifications. Consistency checking within a system relies on 

invariant relations that are specified by a B model. The B model is validated to prove 

relations are invariant. This work defined inconsistency in two ways: 

1. Evidential data may contradict the way [a] digital device works, and/or 

2. It may contradict the hypothesis of the incident 

If the evidence contradicts the given B model, then it specifies a state that cannot be 

reached from the initial state of the model, and is therefore inconsistent. Alternatively, 

the authors make no assertion that the evidence is consistent if it does satisfy the 

invariant relationship, but instead that nothing can be inferred. 

Inconsistency checking allows an investigator to determine if the system has been 

manipulated in an unusual, possibly suspicious, way. Inconsistency checking may 

also help in the reconstruction of events that have happened in the past. The concept 

of inconsistencies should not be limited to the malfunctioning of a system, but could 

also be considered a deviation from the way the system would normally function. For 

example, a computer will generally not log in without a user interacting with it. A 

login event could be considered inconsistent with the normal routine of the system, if 

it was unexpected. This interaction could be considered an inconsistency in the 

normal running of the system if no user interaction took place, and is the basis of 

baseline analysis in host-based intrusion detection systems (Wagner and Soto 2002). 
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The identified known-good baseline or system model is used as the standard of 

consistency. The nature of the inconsistency, such as the absence of expected data, 

can give insight into the behavior that caused the inconsistency. By detecting an 

inconsistency, it may be possible to restrict the possible events to a smaller subset of 

possible events, and maybe even to one specific event that must have happened. 

One issue with inconsistency detection is that is it difficult for humans to detect small 

inconsistencies in large amounts of data (Gladyshev and Enbacka 2007). For this 

reason, automation of inconsistency detection, and event reconstruction, is much more 

reliable. The issue with automated inconsistency detection is that defining what is 

consistent in a system is a labor-intensive task. To be able to determine if an action is 

truly inconsistent, an investigator would need to know every possible consistent result 

of the action. When considering high-level logic, such as in semantic integrity 

checking, inconsistencies are defined as a break in logical order, which humans can 

usually reason about relatively easily. The issue is that a human must define each and 

every action that is acceptable, as well as the order of those actions when attempting 

to automate the inconsistency detection process. When determining the consistency of 

a data structure, such as in Zhu and Gladyshev, et al. (2009), the consistent pattern is 

no longer necessarily based on reason, but on how the system is programmed to 

function. If the system is not well documented, then determining all consistent 

functions becomes difficult. Finally, inconsistency detection is able to reconstruct 

events when there is an inconsistency in the first place, and there is enough 

information to infer events that must have happened. Rigorous automatic event 

reconstruction must be able to determine consistent, as well as inconsistent events 

through time. 

6.1.5 Comparative Analysis 
As described in Kahvedzic and Kechadi (2008) and Zhu, James et al. (2009) the 

Windows Registry contains much information about user activities. By default, 

Windows systems backup the Registry when creating Windows Restore Points. 

Traditional digital investigation approaches look at a system as a single state, with 

only the most recent state being observable. Comparative analysis seeks redundant 

data sources, such as Windows Restore Points, and uses this data to determine system 

changes through time. If each Restore Point, and the Registry hives within, is 

considered as a state snapshot, then changes between states may be enumerated. As 
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shown in Figure 6.5, each Registry hive snapshot is a state snapshot that can be 

ordered by time. Each state snapshot is compared to the next consecutive state, and all 

differences – changes in the state over time – are enumerated.  

 

Figure 6.5 Enumerating differences between state snapshots, and extracting events 
that must have happened based on these differences. Zhu, Y., J. James, et al. (2009). 
"A comparative methodology for the reconstruction of digital events using Windows 

Restore Points." Digital Investigation 6(1-2): 8-15. 

Based on these changes, and how the system is known to work, user and system 

actions that must have happened between the two state snapshots can be inferred. 

Comparing saved states produces a list of changes to the data spanning the length of 

time, at the very least, between the first and last saved state. Further, extracted events 

with no associated timestamp information may be time-bound as previously 

described. In this case, changes must have happened between the creation times of the 

ten consecutive snapshots. Time bounding of an event between snapshot creation 

times is shown in Figure 6.6. 

 

Figure 6.6 Event with no timestamp information may be time-bound between a prior 
state snapshot and a known limiter 



CHAPTER 6. AUTOMATIC EVENT RECONSTRUCTION 

80 

As previously described in Zhu, James et al. (2010) the consistency of such types of 

data must be intact, and if not then deliberate alterations to the system or data must 

have been made. Comparative analysis has a number of benefits: First, much more 

information about past events can be found that would otherwise be unavailable. 

Second, it is possible to detect anti-forensics methods if the known consistency of the 

system has been altered along the timeline. Third, comparative analysis can be used 

after an incident has occurred without the need for pre-installed software. And finally, 

comparative analysis has proven to be useful for many types of redundant data across 

different operating systems (Mac OS time machine backups, iPhone backups, tape 

backups, etc.). 

However, comparative analysis is only useful if enough redundant data exists to 

compare. If only the most current state of suspect data is available, this method is not 

useful. Since Windows Restore Points can be turned off, and savvy users can attempt 

to remove any redundant data, this method will not always be effective. 

6.1.6 Probabilistic Methods 
Probabilistic methods, such as Bayesian belief networks, have been applied to 

forensic investigations in a number of ways in an attempt to objectively measure the 

level of probability about a given hypothesis. In the works of Keppens, Shen et al. 

(2005) and Keppens (2007), Bayesian networks were used for statistical hypothesis 

testing, were “a piece of evidence [may] be evaluated by determining its likelihood 

under alternative hypotheses…”. As shown in Figure 6.7, multiple hypotheses are 

probabilistically related, and given observed evidence the probability of hypotheses 

may increase or decrease, also having an effect on the probability of related 

hypotheses. Bayesian networks in this case facilitate the computation of joint 

probability distributions over a large set of variables. This means that for a given 

piece of evidence, the joint probability distribution of all hypotheses that explain the 

evidence may be calculated. “Bayesian networks simplify these calculations by 

considering the independencies between variables” (Keppens 2007). Keppens 

attempted to apply Bayesian networks for any type of evidential reasoning. However, 

probabilistic analysis methods have recently been applied to attempt to reason 

specifically about artifacts in digital forensic investigations. 
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Figure 6.7 Scenario structure where each square is a hypothesis that has a 

probabilistic relation denoted by an arch. Reducing the probability of one hypothesis 
based on observed evidence would have an effect on the probability of related 
hypotheses. Keppens, J. (2007). Towards qualitative approaches to Bayesian 

evidential reasoning, ACM. 

Probabilistic methods in digital investigation thus far generally look at the state of the 

system such as in Carney and Rogers (2004) and Xia, Fairbanks et al. (2008), where 

updating the attributes of files were considered in the context of a given hypothesis. In 

these works, probabilistic models of update patterns of artifacts are created. For 

example, Xia, et al. created lists of all touched artifacts, and attempted to extract 

specific artifacts that are unique to the specific action of interest as well as the 

artifact’s probabilistic relation to other artifacts in the system. Similarly, Carney and 

Rogers attempted to model the relations between artifact updates that were then 

compared to the current state of the artifact. Matching the created model on pre-

determined variables allowed for a probabilistic analysis of the likelihood of the 

hypothesis. In this case, the likelihood of a virus downloading images on a computer 

versus a human user based on the time-span between the image creation times. 

Khan, Chatwin et al. (2007) models artifact update patterns happening during 

program execution in a system with the previously mentioned Bayesian network 

analysis. In this work, activity in a system is modeled as related artifact update 
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patterns that are observable on a hard drive. Update patterns were observed, and the 

probability of an artifact updating given a particular action was determined through 

experimentation. Once probabilities for multiple actions updating a particular artifact 

are created, a Bayesian network may be used to calculate the joint probabilities of 

each action updating the artifact. The result the action that is most likely to have 

updated the artifact if the artifact is updated. 

Kwan, Chow et al. (2008) also submitted a method of reasoning about evidence using 

Bayesian networks. Again, in the proposed method the probability of three states of 

some hypothesis – yes, no and uncertain – are assigned probability values. Their 

method, in effect, attempts to determine the likelihood of a hypothesis being true, 

false or inconclusive rather than directly evaluating the likelihood of one hypothesis 

compared to another. If prior probabilities for hypotheses are unknown, then the 

probabilities of these hypotheses are equal. Once a root hypothesis is established, if 

other hypotheses exist that are conditional on the root hypothesis, then the state of the 

root hypothesis has a probabilistic relation to any other hypotheses with a causal 

relation. This method allows an investigator to statistically relate multiple hypotheses 

that may otherwise appear to be unrelated. It also allows an investigator to direct the 

investigation based on the most likely hypotheses if little information is initially 

known. As evidence is observed, hypotheses may be updated, allowing the 

investigator to easily determine which hypotheses are more relevant based on the 

observed evidence. 

Probabilistic reasoning about the current state of artifacts on a suspect system does 

have benefits in reasoning with uncertainty, but there are currently some challenges 

with these methods. The first challenge is an often-used decreasing probability of a 

hypothesis when an artifact is missing, incorrect or inconsistent. Overill, Silomon et al 

(2010) argue that “a lack of evidence is not grounds to decrease probability of the 

event happening”. This is because the event may of happened, and the evidence was 

either not created or altered by other events that happened later in time. This is made 

even more relevant since in digital forensics, anti-forensics practices are becoming 

more common (Schlicher 2008). Also, if we assume an alternative hypothesis where 

the absence of all, or most, artifacts denotes anti-forensics, this also gets us no closer 

to the truth since it is just as likely that the event did not happen. 
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Another issue is that probabilistic methods cannot account for an updated model 

without testing and updating. Investigators can look for installed software and traces, 

and do research or ask others (knowledge updating) in relation to their findings, then 

continue the investigation with this updated knowledge. Probabilistic methods, 

however, are limited to the scope of artifacts that were known when the model was 

derived. If new relations cannot be created, e.g. knowledge of a previously unknown 

artifact-cleaning program, then reduction of the probability of the hypothesis based on 

the lack of artifacts is incorrect. Finally, the identification of accurate prior 

probabilities for actions or hypotheses is difficult. For example, in Kwan Chow, et al. 

(2008), prior probability is determined by interviewing expert investigators from a 

single region in a single country. The defined probability, however, is conjecture. Not 

only is this probability subjectively defined, but also what is true in one region or 

country may be completely false in another. While probabilistic methods may help in 

recommending the possible next step or direction of an investigation, as discussed in 

Carrier and Spafford (2005), the usage of probabilistic methods may lead to an 

overconfidence in false conclusions based on false prior assumptions.  

6.1.7 File System Activity Analysis 
Continuing from probabilistic methods, one method of file system activity analysis 

has been presented by Khan and Wakeman (2006). In their work, a two layer back-

propagation Elman neural network (Elman 1990) was used to learn and detect 

application “footprints”. Traces that were created on a disk (usually file creation and 

manipulation) by a particular application of interest were fed into the neural network 

in the order in which they were accessed, which is illustrated by Khan and Wakemen 

in Figure 6.8. Extracted features, including log updates; Windows Registry updates; 

created, access and modified files; and free blocks, were used to learn the update 

time-span relationships and file-system manipulation patterns of the application. 
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Figure 6.8 Input diagram for training a neural network on the artifacts updated by 

the application's execution, where modification to the file system, Windows Registry, 
log files and low-level storage are aggregated to learn overall update patterns. Khan, 

M. and I. Wakeman (2006). Machine Learning for Post-Event Timeline 
Reconstruction. 

This method is also highly probabilistic, where the neural network is able to calculate 

the likelihood of an observation matching a previously derived model (footprint). 

Khan, Chatwin et al. (2007) showed that neural networks trained on specific 

application trace creation variables show relatively good results in determining and 

differentiating one application’s footprint from another. One issue – that was also 

discussed by the authors – is that these systems need a very large amount of training 

data to be reliable. The training data needed, manual variable selection and separate 

neural networks per application make this method highly manual. Also, when 

comparing the application footprint of this method to the multi-layered application 

signatures described in James, Gladyshev et al. (2010), the differences in models 

suggest that learned signatures lack some specificity that could provide more event 

information for use in reconstruction. This issue is discussed further later in this work. 
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6.1.8 Computer Profiling 
The work on computer profiling presented in Marrington, Mohay et al. (2007) and 

Marrington, Mohay et al. (2010) attempts to generate a computer usage profile that 

“… allows a human examiner to make an informed decision regarding the likely value 

of the computer system to an investigation before undertaking a detailed manual 

forensic examination”. In this work an abstracted object model is used to classify 

objects observed in a suspect system. Observed objects are categorized as particular 

object types, such as system, principal (people/groups), application or content data. 

Relationships between these objects are expressed using predicate expressions, for 

example, a principal (p) updating content data (c) could be expressed as “updated(c, 

p)”. The set of these relationships provide insight into the logic of the system, and 

allow for the identification of indirect relationships between objects that were 

otherwise thought to be unrelated. As shown in Figure 6.9, by examining an object of 

interest, object x in this case, the relation of other objects (a, b, c and the principal 

“Wally”) may be found. Times and events – defined as recorded, inferred and 

unknown types – are found, and are associated with their corresponding objects, 

where possible. The overall computer profile is then represented by these object, 

relationship and event connections. Based on this representation, investigation 

theories about a computer system and its history can then be formally described in 

terms of the model and tested based on the derived computer profile. 
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Figure 6.9 A diagram of found objects and their relations determined by investigating 
object x. The diagram is used to create a computer profile where the object (user) 
“Wally” is the author of objects a, b, c, and x. Marrington, A., G. Mohay, et al. 

(2010). A Model for Computer Profiling, IEEE. 

By attempting to concentrate on an informational rather than a computational level, 

this method does increase practicality compared to methods described in section 

6.1.3. In general, states are defined at a more abstract (object) level, and are based on 

observed evidence. Because of this, creation of this informational model is less 

computationally intensive, and also potentially less comprehensive, as not all possible 

combinations of past states are considered. The drawback is this model represents 

suspect objects and their relations, but makes no conclusion about what exactly these 

relations mean. The investigator is still left to manual hypothesis generation and 

testing, where the method proposed by Gladyshev and Patel (2004) attempts to 

automatically present possible hypothesis as well as test the hypotheses within the 

created models. 
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6.1.9 Signature Matching 
The method of using signatures to detect certain types of actions or events is 

commonplace in many information security related products such as antivirus and 

intrusion detection systems (IDS)(Sy 2005; Scarfone and Mell 2007). Pouzol and 

Ducassé (2002) gave a formal specification of intrusion signatures and detection 

rules. In their work, an event is defined as a collection of data values, such as IP 

address and port number, identified by a name. The concept of a ‘trail’ is defined as 

an ordered sequence of events. The concept of a ‘filter’, which blocks or passes 

events, is also defined as “a set of constraints between event names, constant values 

and variable names”. “An instance of a signature is a collection of events that (a) 

fulfill the constraints in filters (b) with respect to the correlation specified by the 

logical variables (c) and are in a correct order according to the temporal constraints.” 

In other words, signatures are essentially encoded sequences of events and 

constraints. Once a signature is defined, an algorithm is given to find instances of 

multi-event signatures. From a given input trail, a search starts from the first part of 

the trail. Defined filters reject non-matching events and move to the next in the 

sequence, or if an event instance is matched, the filter outputs the preliminary match 

and the position of the match on the input trail. Once the first event has been matched, 

the current event in the signature is replaced with the next event in the signature’s 

event sequence. If multiple instances of the second event in the sequence are detected, 

separate instances are created from the original sequence, each correlating to a 

difference instance of the second event; essentially a separate trail of investigation. 

When a full signature sequence is detected, if all event constraints are compatible, 

then a new notification is issued that an instance of the sequence has been found. In 

the case of multiple possible matches that meet all the constraints, multiple 

notifications may be issued. 

This work attempted to formalize the signature detection process for intrusion 

detection systems, but many of the concepts such as the formalization of signatures 

and matching may be able to be applied to other areas utilizing signature-based 

matching methods. Signature based methods have been used in security products for 

many years, and have proven to be effective when a known pattern can be tested for. 

The downside, however, is that “traditional signature-based antivirus and antispyware 

fail to detect zero-day exploits or targeted, custom-tailored attacks” (Roiter 2007). 
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With signature-based methods if a signature does not exist, the event cannot be 

detected, unlike probabilistic methods that may be able to present each possibility in 

terms of the likelihood that a malicious event took place without explicitly knowing 

about the specific malicious event. 

The hypothesis of this work is that, similar to detection of events in intrusion 

detection systems, events that have happened in a computer system – such as a user 

executing a program – may also be detected using signature-based methods. Further, 

unlike IDS and pre-incident monitoring, signature based methods may be used to 

detect a limited history of events during a post-mortem analysis. 

6.2 Research Problem Statement 
Generally, the previously mentioned work must either be implemented before an 

event takes place, such as pre-incident monitoring, are too computationally complex 

to be practical for real world digital forensic investigations, such as the described 

state-machine analysis, or simply produces more information without producing more 

knowledge for the investigator, such as the described probabilistic and computer 

profiling methods. This means that expert-level manual human inference is still 

necessary. However, manual inference is rarely verified, and if so, is manually 

verified by another expert, requiring much time and duplication of efforts (James and 

Gladyshev 2010). 

To address these issues, the objective of this research is to develop a method that 

automates the inference of actions from the observation of low-level traces in a 

suspect system that results in automatic reconstruction of a collection of happened 

actions. 

More specifically, this research will address the previously mentioned issues in the 

following ways: 

• Develop a practical and effective method to reconstruct events based on the 

automation of logical inferences an investigator manually draws about 

observed traces. This solution, at least, must be able to be conducted during a 

post-mortem analysis per standard digital investigations. 

• Investigators encounter many different types of suspect operating systems, 

each with their own unique features. This research will aim to use human 
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thought processes as a model, allowing the process of inferring information 

from observations to be applied regardless of the operating system. 

• Formal proof for digital forensic methods has been called for by (Gladyshev 

and Patel 2004; Taylor, Endicott-Popovsky et al. 2007) and as the field of 

digital forensics matures, rigorous mathematical analysis of proposed methods 

will be of increasing importance for the method to be accepted by 

investigators and courts of law. As such, a formal analysis of the proposed 

methods will be given. 

6.3 Research Idea 
Current investigative tools do well in providing more information to an investigator. 

For example, many forensic applications display Windows Registry information, 

presenting the results of parsing to an investigator. When this information is presented 

to the investigator, the investigator uses his or her knowledge of the system combined 

with the information presented to derive further knowledge about what has occurred. 

For example, if an investigator examines the Windows prefetch folder, the objects 

contained in the folder have little information in their content, but with knowledge of 

the system, the investigator can know that each object corresponds to a program that 

has been run in the system, and the object’s timestamps may correlate to the last time 

the actual application was ran. This inferred knowledge is also assumed correct unless 

further information, such as a user manually creating the MRU entry, is introduced, 

and the inference is reevaluated. 

This work analyzes the inferences an investigator makes during an investigation. With 

knowledge of the system, investigators must normally observe the state of the system, 

and attempt to infer what actions have happened in the past. This inference process is 

manual event reconstruction. When analyzing evidence, investigators normally gather 

knowledge in at least two ways: by direct observation and by the inference of one fact 

from the observation of others. This research is based on the theory that both the 

direct observation and inference phases of an investigation of user actions can be 

automated. This work seeks to prove that by determining the user action traces that 

normally appear in a system after a user action, it is possible to automatically infer the 

occurrence of the event based on the observable traces. 
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6.4 Summary 
This chapter examined the need for automatic event reconstruction in digital forensic 

investigations, and explored previously proposed methods. Current issues with 

automatic event reconstruction were given, as well as practical needs that must be met 

before automatic event reconstruction can be of practical value. This chapter 

concluded by introducing the objective and basic ideas of this work. 



 

 

Chapter 7 

Theoretical Background 
This chapter begins by giving a brief introduction into human inference in the context 

of digital investigations. Next, the concept of causation is discussed at a high level. 

After, causal relations in a computer system are discussed that allow for back tracing 

of causal chains from effect to cause. Mathematical notation used throughout the 

remainder of this work is then given, followed by a formal definition of system and 

action models that are the base from which event reconstruction of actions in the 

system can take place. 

7.1 Inference in Investigations 
When analyzing evidence, investigators normally gather information in two ways: by 

direct observation and by the inference of information from the observation of facts 

(Coopman 2006). As legal professionals put it, “The object of inferences is to reach a 

valid conclusion based on the facts and form of the argument” (Giarrtano and Riley 

2005). Human inference, however, is prone to assumption and error, examples of 

which are discussed by Gilovich (1993) and Ogawa, Yamazaki et al. (2010). To 

accurately infer information from given facts an investigator must understand the 

underlying relation between the observed facts and the inferred conclusion (Senge 

2006). 

The problem of human investigation was studied in Anderson, Schum et al (2005). 

Somewhat similar to empirical verification in the philosophy of science, they claim 

that to define a relationship between observed evidence and a hypothesis requires 

“relevance [to the hypothesis], credibility [or believability of the evidence] and 

probative [inferential] force or weight”. An argument is then defined as “a chain of 

reasoning from evidence to hypothesis”, where each link in the chain of reasoning 

must be justified either via deductive or inductive reasoning. “Each link exposes a 

source of possible doubt or uncertainty.” Because an investigator is observing 

evidence of an action and not the action itself, any inferred information may not 

definitely be true. Instead, inferred information is based on a level of belief held by 

the investigator based on their observations combined with their knowledge and 

experiences (and biases). Several methods, such as Bayes’ theorem and especially the 
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related Dempster-Shafer theory of evidence, attempt to assign probabilistic degrees of 

belief to a hypothesis based on evidence (Shafer 1976). 

An example of a common inference in digital forensic investigations utilizes the 

Microsoft Windows Registry. The Windows Registry is a database for storing 

operating system configuration data (Hillier 1996). The “TypedURLs” key “stores all 

[web addresses] that the user has typed into [Internet Explorer]” (Farmer 2007). 

Because entries in the TypedURLs key are normally only added after a user manually 

types the address into the Internet Explorer address bar, an investigator may normally 

infer that the user must have knowingly typed the specific website address. It is 

possible that alternate explanations may exist, such as the computer being infected 

with a virus that writes address to the TypedURLs key. As alternate hypothesis are 

developed, they must be tested to determine which explanation is more probable.  

7.2 Causation 
The concept of causation has often been discussed in philosophy. Spinoza (1677) 

stated that “[g]iven a determinate cause, the effect follows of necessity, and without 

its cause, no effect follows”. Later, Hume (1886) postulated that “…whatever begins 

to exist, must have a cause of existence”. In the same work Hume went on to cast 

doubt on the relation between cause and effect, essentially stating that effects follow 

causes based on observation and experience, and since human observation is 

incomplete there is no reason to believe effects will always follow causes (Anscombe 

1999). Philosophers such as Kant and Russell challenged this view, but much 

controversy still exists concerning the philosophy of causation. Despite unresolved 

philosophical conflict concerning causation, science continues to rely on empirical 

study, and so shall this work. Hume defined rules by which to judge cause and effects. 

The two most relevant to this work are as follows: 

• If multiple causes produce the same effect, it is because they share a common 

quality. 

• Different causes must produce different effects. If a different or unexpected 

effect is found, it is from a different cause. 

Causation can generally be defined as the relationship between one event and a 

second event, where the second event is a consequence of the first. Cumulative causal 
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relations in a system have previously been applied to digital forensic investigations in 

the form of happened-before relations (Gladyshev and Patel 2005; Willassen 2008a). 

7.3 Causal Relation Between Actions and Objects 
Throughout the remainder of this work the following definitions will be used: 

Object – an item in a system (e.g. a file) that has associated information in the form 

of content and/or meta-data. 

System – a collection of objects. 

System state – the collective state of all objects in a system at a point in time. 

Process – an occurrence in the system that changes the state of one or more objects 

over time. Processes will be represented in graphs by a diamond symbol. 

Trace – a change to an object’s associated information on the occurrence of a 

process. Traces will be represented in graphs by an oval symbol. 

Action – any event external to the system that is the direct cause of a process. An 

action is the farthest point at which a happened event can be inferred. Actions will be 

represented in graphs by a rectangle symbol. 

A causal relation between actions and object updates (trace creation) via process 

execution can be determined because of causal chaining, where an action causes the 

process and the process causes the update of corresponding objects (Figure 7.1). 

 

Figure 7.1 Causal chain of an action causing a process that causes trace creation 

In a computer system, an action can be the cause of one or more processes, which can 

in turn be the cause of the production or modification of one or more traces in the 

system. The relation of actions to processes to traces, then, is one-to-many. In this 

case, the observation of one or more resulting traces may be related back to the 

process that caused it, which may in turn be related back to the action that caused the 

process (Figure 7.2). 

 

Figure 7.2 Back tracing the causal chain from the observed trace to determine the 
corresponding action that caused the trace 
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7.3.1 Object Updates in Time 
In a computer system, actions cause processes to execute over an unknown period of 

time that modify or create objects as they are being executed. Multiple actions can 

start multiple concurrent processes, and multiple processes can modify the same 

objects. 

As stated by Gladyshev (2005), “many digital systems, such as digital circuits, 

computer programs, and communication protocols can be described mathematically as 

finite state machines. A finite state machine (FSM) can be viewed as a graph whose 

nodes represent possible system states, and whose arrows represent possible 

transitions from state to state”. Likewise, Carrier (2006b) claims, “modern computers 

are FSMs with a large number of states and complex transition functions”. By 

utilizing this fact, finite state machine models that represent the computations of a 

computer system may be formally defined. 

From this, processes in a system can be modeled as finite state automata. User actions 

can be viewed as inputs into these automata whose outputs are updates to objects on 

the disk over time. In principle, these automata can be analyzed using traditional 

techniques, such as state space exploration, etc. However, the real-world complexity 

of computer systems makes this infeasible in practice due to the problem of 

exponential state-space growth, known as state-space explosion (Heimdahl and 

Leveson 1996). In order to find a tractable solution, this research proposes a 

simplified model. The key idea behind simplification is that most systems investigated 

in digital forensics are interactive, which means that user actions have immediate 

effect on the system state. As a result we can define actions as having an immediate 

effect on the system, where all effects on the system happen in a short period of time 

from each other. This means that when an action happens, related object meta-data is 

updated within a short, nearly instantaneous, period of time after the action occurs.  

One of the major issues of event reconstruction in a post-mortem forensic analysis is 

the lack of data. Much like the crime scene for a physical investigation, only the final 

state is immediately observable, and other related or non-related actions could have 

happened after the suspected action, effectively destroying some evidence. 

As shown in Figure 7.3 each process has a collection of associated objects, and 

multiple processes can modify the same object. This means that as more processes 
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with overlapping associated objects are executed traces associated with processes that 

happened earlier in time are overwritten, creating a collection of traces that were 

partially updated by an earlier process and partially updated by a newer process. The 

final overall state of a system is comprised of these full and fragmented collections of 

traces. Consider Figure 7.3, where the X axis is time, the Y axis represents objects in 

a system (objects 1 – 10), and three processes (P1 – 3) denote processes that modify 

an object a at particular time. The final observed state of all objects is at 13:15 (the 

straight line of object), where each object is represented by the symbol of the process 

that last updated it. 

Only partial traces of process 1 (P1) and process 2 (P2) can be observed in the final 

observed state. Since process 3 (P3) was the most recently executed process, all 

objects associated with process 3 contain traces of P3’s occurrence. 

 

Figure 7.3 Object Modification vs. Time Graph showing that overlapping processes 
modify some of the same objects, producing partial traces of processes when 

observing the final state (the straight line at 13:15) 

7.3.1.1 Functional Equivalence of Actions  
If two actions, A1 and A2, both cause one process, P1, that in turn causes the creation 

of traces (Figure 7.4), then on the occurrence of an action the detection of the 

associated traces denotes the existence of either A1 or A2. However, according to 

Hume’s rules for causation – discussed in section 7.2 – there is a quality that is shared 

between both A1 and A2, and the observation may be further reduced to capture 

objects specific to one action or the other. If the observation cannot be reduced then 
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A1 would be so similar to A2 that there is no observable difference to the final 

observed state. In this case the two actions are said to be ‘functionally equal’. 

 

Figure 7.4 Two actions causing the same event become functionally equivalent unless 
they can be further reduced into unique actions in terms of resulting traces 

Functional equality is the limit to what information may be inferred by observing a 

system. For example, detection of an action based on the observation of created traces 

may be able to determine that the “enter” key was pressed; however, the intention past 

the result of the physical action of the user cannot be directly inferred. Likewise, 

differentiation of multiple users, such as determining whether a human or a cat hit the 

enter key, is not likely to be inferred. 

7.4 Mathematical Notation 
For the remainder of this work, the following notation will be used: 

Sets: Sets are denoted by capital Roman letters, e.g. A, B, C. Sets are defined by 
listing their members between { and }, e.g. A = {1,2} 

Empty set: Empty set is denoted as ∅ 

Set Instance: A member of a set is denoted by lower-case Roman letters, e.g. a, b, c. 

Membership: Statement that a is a member of set A is denoted a ∈ A. Statement that 
a is not a member of set A is denoted a ∉ A 

Subset: Statement that set A is a subset of set B is denoted A ⊆ B 

Union, intersection, and set difference: Union, intersection, and set difference of 
two sets A and B are denoted A⋃B, A⋂B, and A∖B respectively. 

Output: An output set or element will be denoted with an apostrophe (‘). For 
example, a function that takes an input set and outputs a resulting set could be written 
as X’ = f(X), where X’ is the resulting set produced from the original set X. 

Rationals: Set of rational numbers is denoted ℝ 

List (Sequence): A list (sequence) is defined by listing its elements in round brackets, 
e.g. (0,1,1,0,0). 
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Numbering of elements in a list: Elements in a list are numbered from 0. The i-th 
element of a list a is denoted ai. If a = (1,2,3) then a0 = 1, a1 = 2, a2 = 3 

Functions: Usual mathematical syntax is used for functions. For example, term f(x,y) 
denotes the application of function f to arguments x and y. 

Dot Notation: Attributes of a structure are addressed using dot (.) notation. For 
example, the attribute a in the structure S is addressed as S.a 

7.5 Formal Definition of System and Action Models 
The formal models proposed are based on the observation of digital systems during 

experimentation that is discussed further in section 8.6. It was observed that when a 

user interacts with a system, the given action causes changes in the state of the 

system. In this work we found that real digital systems cannot be defined as 

completely deterministic, for example, in the case of race conditions. However, if the 

system is in a particular state, an action may consistently cause the same modification 

of state within the system each time the user action takes place while in that particular 

state. If the state of the system is exactly the same before the action takes place, then 

exactly the same effect may occur. A user clicking on a program’s icon, for example, 

is likely to consistently execute the program. The executed program must access 

specific files to load, which in turn updates file content, metadata, log entries, etc. 

This work will focus on file meta-data, and specifically time stamp information 

associated with objects. 

A system contains a finite set of objects, O, where each object in the set O may be 

defined in terms of associated access (ta), modified (tm) and created (tc) time stamps: 

o = (ta, tm, tc). 

Time stamps can be considered fixed attributes of an object that either exists or not, 

and a time stamp value is a variable time value contained within a time stamp 

attribute. 

τ = tsv(t) 

where: 

• t is a time stamp 
• τ is a time stamp value 
• tsv is a function that returns a time stamp value given a time stamp 

 

The objects and time stamps in a system can be described as follows: 
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O = {o1, o2, o3…} 

Tm = {tm1, tm2, tm3…} 

Ta = {ta1, ta2, ta3…} 

Tc = {tc1, tc2, tc3…} 

T = Tm ∪ Ta ∪ Tc 

An action is defined as: 

            𝑎 = 𝑀𝑎,𝐷𝑎,𝑂𝑎,𝑎𝑓,Δ𝜏!"#,Δ𝜏!"#  

where: 
• Ma is a set of timestamps that are updated to the current time plus some 

random period of time (𝜏 +   Δ𝜏), where Δ𝜏!"# ≤ Δ𝜏 ≤ Δ𝜏!"# 

• Da is a set of timestamps set to a default value  

o Da = {  (t,  𝜏) } , where t is the time stamp, 𝜏 is the default value 

• Oa is a set of objects that are created if they are not already present 

• af(O,  𝜏) is a function which models the effect of the action. It takes in a set of 

objects O and returns another set of objects produced from the original by 

updating timestamps in Ma to the current time 𝜏 + Δ𝜏, resetting timestamps in 

Da to default values, and adding Oa objects to O if they are not present12 

o O' = af(O, 𝜏) 

As defined, an action may update timestamps. Since the time stamp update period is 

not instantaneous, the update will happen at some random interval after the action. 

This update takes place at a random delta after the time of the action. The action will 

also create an object if it does not exist. Created objects may have timestamps set to 

default values that may possibly be sometime before the time the action took place. 

For example, software installation and backup recovery actions could produce objects 

with time stamps that are before when the installation and backup actions occurred. 

Finally, an action function exists that accepts a set of objects as an input, and returns a 

modified set of objects produced from the original in the form of possibly updated 

time stamps. 

The set of all actions is defined as: 

  𝐴 = {𝑎!,𝑎!,𝑎!… } 
                                                
12 The timestamps of members of Oa are members of either Ma or Da and their values 
are set accordingly.  
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Actions happen at particular points in time. An instance of an action is defined as: 

	   𝑖 = (𝑎, 𝜏) 

where: 

• 𝑎 ∈ 𝐴 is an action 
• 𝜏 ∈ ℝ   is the time of the action instance occurring 

The set of all instances occurred in the system is defined as  

𝐼 = 𝑎, 𝜏   𝑎 ∈ 𝐴, 𝜏 ∈ ℝ  

In the proposed model, the set of actions is defined such that each timestamp is a 

result of some action. This simplified system model is defined as: 

∀𝑡 ∈ 𝑇,∃𝑖 ∈ 𝐼, 𝑡. 𝜏 =   𝑋   ∨ 

∃𝑑   ∈ 𝑖.𝑎.𝐷𝑎, 𝑑. 𝑡 = 𝑡 ∧ 𝑡. 𝜏 = 𝑑. 𝜏  

where: 

• 𝑋 =     𝑖. 𝜏 +   Δ𝜏 + 𝑑𝑤𝜏 
o 𝑖. 𝜏 is the real time of the action instance 
o Δ𝜏 a random update period 
o 𝑑𝑤𝜏 is the time taken to write the trace to the disk, which is 

negligible in terms of the timestamp, but means that two traces 
cannot be written at exactly the same real time 

This model states that for all time stamps there either exists an action instance where 

the current time of the time stamp equals the time of the action instance (𝑖. 𝜏) plus 

some random period of time (Δ𝜏) plus the time to write to disk (dw𝜏). Otherwise the 

time stamp is equal to a default time stamp. 

7.5.1 Action Instance Inference Function 
The aim of event reconstruction is recovery of the sequence of actions that happened 

in the system. In terms of the proposed model, event reconstruction corresponds to 

determining the set of action instances I that happened in the system based on 

information contained in O’. This ordered set of action instances is defined as an 

Instance Sequence (IS). 

Suppose there was an Ideal Instance Sequence Reconstruction function (IISR), such 

that  

𝐼𝑆   =   𝐼𝐼𝑆𝑅(𝑂!,𝐴)                     (*) 
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Such a function, however, is not possible due to the destructive nature of the 

assignment. Suppose that IS consists of several instances of the same action 𝑎 ∈ 𝐴: 

 𝐼𝑆 =    𝑎, 𝜏! , 𝑎, 𝜏! ,… , 𝑎, 𝜏!   , where 𝜏! < 𝜏! < ⋯ < 𝜏! 

The effect of IS on the system state O is 

𝑂! = 𝑎.𝑎𝑓(𝑎.𝑎𝑓(…𝑎.𝑎𝑓 𝑂, 𝜏! ,… , 𝜏!!!, 𝜏!) 

Due to the destructive nature of the assignment, the final state of the system O’ 

depends entirely on the last action instance, which means that any subset of IS that 

includes 𝑎, 𝜏!  will result in the same O’ and function IISR() as defined in (*) is 

impossible.  

A different event reconstruction function ISRS() can be defined to return the set of all 

possible IS that result in given O’: 

 𝐼𝑆𝑅𝑆   𝑂!, 𝐼 → 𝐼𝐼 = {𝐼𝑆!, 𝐼𝑆!, 𝐼𝑆!,… }   

However, due to the destructive nature of the assignment, any such set II will be 

infinite.  Under assumptions of discrete time, zero Δ𝜏, and finite duration of the 

incident, II becomes finite. That case was explored in Gladyshev and Patel (2004), 

which described an algorithm for computing II.  Although computing II is useful for 

automated testing of formalized investigative hypotheses, it is not helpful from a 

human investigator’s perspective because it obstructs investigative reasoning with a 

large number of possible action instance sequences, only one of which actually 

happened. 

In order to assist a human investigator, it is more useful to determine only those action 

instances that definitely happened according to the available evidence. The 

corresponding Instance Sequence Reconstruction function ISR() can be defined as   

I' = ISR(O',A) 

whose output is: 

I' ⊆ I 

Unfortunately, due to randomness of Δ𝜏, the precise determination of the time of 

action instance is also impossible in general, because two action instances 𝑎, 𝜏!  and 

𝑎, 𝜏! , such that 𝜏! − 𝜏! ≤ |𝑎.Δ𝜏!"# − 𝑎.Δ𝜏!"#| may result in the same 

timestamp:  𝑡 = τ! + Δτ! = τ! + Δτ! 
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Thus, for the purposes of this dissertation we define event reconstruction as an action 

Instance Estimate Reconstruction function IER(), such that  

 𝐼𝐸 = 𝐼𝐸𝑅(𝑂!,𝐴) 

where: 

• 𝐼𝐸 = 𝑎, 𝜏!"#, 𝜏!"#      𝑎 ∈ 𝐴, 𝜏!"# ∈ ℝ, 𝜏!"# ∈ ℝ, 𝜏!"# ≤ 𝜏!"#} 

•  ∀𝑒 ∈ 𝐼𝐸,∃𝑖 ∈ 𝐼,       𝑖.𝑎 ∈ 𝑒.𝑎 ⋀  (𝑒. 𝜏!"# ≤ 𝑖. 𝜏 ≤ 𝑒. 𝜏!"#)  

An implementation of the IER() function is given in Chapters 8 and 9. 

7.6 Summary 
This chapter began by giving a brief introduction into human inference in the context 

of digital investigations. Next, the concept of causation was discussed at a high level. 

After, causal relations in a computer system were discussed that allowed for back 

tracing of causal chains from effect to cause. Mathematical notation used throughout 

the remainder of this work were then given, followed by a formal definition of system 

and action models that are the base from which event reconstruction of actions in the 

system can take place.



 

 

Chapter 8 

Action Instance Object Update Patterns 
This chapter describes the derivation of action instance object update patterns. A 

practical method for determining the relation between actions and object update 

patterns is given. Analysis of object update patterns allows traces to be categorized, 

and rules of consistency to be determined. The need for object update thresholds is 

discussed, and a method for determining the object update threshold for an action is 

given. Next, a brief discussion and method for generalizing signatures for portability 

across suspect systems is given. The chapter ends by giving an overview of the object 

trace update experimentation used to derive general categories. 

8.1 Action Instances and Trace Evidence 
This chapter proposes the theory that the observation phase of an investigation can be 

encoded as signatures that represent knowledge about the state of the system. By 

determining the traces that normally appear in a system after an action instance, it is 

possible to automatically ‘infer’ the occurrence of the action based on the observable 

traces. In this section the focus will be limited to timestamps associated with files and 

Windows Registry entries. The hypothesis for signature generation is that when an 

action occurs, associated traces are updated within a short period of time. As a result, 

the occurrence of the action may be inferred by observing that the corresponding 

ensemble of traces have been updated within short time of each other. 

When an investigator conducts an investigation, they observe suspect data and 

attempt to infer what this collection of data means in relation to happened actions. 

This work submits that trace creation signatures associated with specific action 

instances may be used in the same way to represent inferences about the action 

instance. 

For example, an investigator may look at the standard Windows pre-fetch file, and 

from his or her experience and knowledge of Windows operating systems know that a 

pre-fetch file for a program is created every time, and only when, the program is 

launched. He or she can then infer that the creation time of the pre-fetch file in 

question is the last time the associated program was launched, since it must have been 

updated. Other traces, such as files and Windows Registry entries, may also have 



CHAPTER 8. ANALYSIS OF ACTION INSTANCE OBJECT UPDATE PATTERNS 

103 

properties updated in a specific pattern when a given action instance occurs. By 

identifying the known patterns of updated traces, the same types of inferences could 

be made when related artifacts are observed. Signatures encoding these unique object 

update patterns can be created that represents this inference. The inference in this case 

being that a certain program was executed at a certain – approximated – time. By 

finding the ensemble of traces relating to an action of interest, a signature for the 

action may be derived that takes advantage of unique update patterns of a group of 

traces. A system’s current state can be checked for a pattern of traces that are known 

to have certain properties when a specific action instance has occurred. The signature 

itself then becomes an inference hypothesis with the observations being the detection 

or absence of the associated trace pattern.  

Signatures may be created for any action that makes a change in the system; however, 

as described by Khan (2008) and Xia, Fairbanks et al. (2008), differentiation between 

multiple actions implies a uniquely observable pattern. Signatures can be created for 

actions, and quickly tested by scanning the system much like an antivirus scans files 

for patterns of code that may be malicious. The result would be either a positive or 

negative match of each tested signature against the state of the system, allowing for 

action instances to be automatically inferred from the observation of lower-level 

traces. In cases where timestamp information is available it may be possible to also 

approximate the times in which the detected action instance must have occurred, as 

well as infer and approximate previous executions of action instances. 

8.1.1 File System Information 
The majority of operating systems relate timestamp information to objects within the 

system, such as log entries and files. The availability of timestamps differs between 

different versions of Microsoft Windows. For example, the ‘Last Access Time’ has 

been disabled by default for performance reasons in Visa, 2008 and Windows 7. 

However, “disabling last access update does not mean that the Accessed Date on files 

does not get updated at all; it means that it does not get updated on directory listing or 

file opening, but last accessed can sometimes be updated when a file is modified and 

is updated when a file is moved between volumes” (Parsonage 2009). Pre-Vista 

versions of Windows using the NTFS file system, including Windows 2003, do have 

last accessed timestamps enabled by default. In all Windows versions, modified and 

created timestamps are unable to be disabled. Likewise, the Windows Registry 
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provides “[Key Cells] that contain the timestamp of the most recent update to the 

[Registry] key” (Russinovich n.d.). These keys’ time stamps also cannot be disabled, 

providing a valuable resource to investigators. While the detection of the existence of 

suspect data can lead to the inference that a particular action must have occurred, this 

work will focus on object timestamp information as traces of interest. Existence of 

time stamp information allows an investigator to infer that the action has occurred, 

and also approximate when – within what time range – the action must have been 

executed. Temporal knowledge is also valuable when attempting to determine rules of 

consistency related to trace update patterns. 

8.2 General Object Update Categories 
To understand how objects are updated given a particular action instance, a series of 

experiments were conducted that are given in section 8.6. These experiments were 

conducted on a Windows XP system. Tested action instances are opening Internet 

Explorer and FireFox Internet browsers. In summary, the experimentation process 

executed the action instances while monitoring changes in the system. Objects that 

were updated during the action instance were recorded. Next, the state of the meta-

data of the recorded objects was collected, the action instance was again executed, 

and the objects’ meta-data was collected. This process was conducted a number of 

times, after which all meta-data (timestamp) state snapshots were analyzed. Objects 

and their associated timestamp of interest were then manually categorized in terms of 

the observed update patterns. For more specific details about the experimentation 

process, please see section 8.6. 

From these experiments, three major, generalized categories of object meta-data 

update patterns are defined. 

8.2.1 Core Update Category 
The first category defined is the category most commonly used in manual digital 

forensic analysis, as well as previously discussed ‘fingerprinting’ techniques. This 

work defines this category as “Core” object update patterns. Core traces are traces 

that are updated by exactly one action, and are always updated whenever an instance 

of the action occurs. To define Core traces in terms of the model, the following 

supporting concepts need to be defined: 
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1) Let function 𝑈:𝐴 → 2! denote the set of all timestamps updated by an action: 

∀𝑎 ∈ 𝐴,∀𝑡 ∈ 𝑇  |  𝑡 ∈ 𝑈 𝑎 ⇔ ∃𝑎      𝑡 ∈ 𝑎.𝑀𝑎 ⋁ 𝑡 ∈ 𝑎.𝐷𝑎 ) 

2) Let function 𝐴𝑈:𝐴 → 2! denote the set of all timestamps always updated by an 

action: 

∀𝑎 ∈ 𝐴,∀𝑡 ∈ 𝑇  |  𝑡 ∈ 𝐴𝑈 𝑎 ⇔ ∀𝑎      𝑡 ∈ 𝑎.𝑀𝑎 ⋁ 𝑡 ∈ 𝑎.𝐷𝑎 ) 

3) Let function 𝑈𝑈:𝐴 → 2! denote the set of all timestamps uniquely updated by an 

action: 

∀𝑎 ∈ 𝐴,∀𝑡 ∈ 𝑇  |  

  𝑡 ∈ 𝑈𝑈 𝑎 ⇔ 𝑡 ∈ 𝑈 𝑎 ⋀ ∀𝑎! ∈ 𝐴  |  𝑎! ≠ 𝑎  ⟹ 𝑡 ∉ 𝑈(𝑎!)    

The Core traces of an action is defined as the set of all timestamps that are always and 

uniquely updated by the action: 

𝐶𝑂𝑅𝐸 𝑎 = 𝐴𝑈(𝑎)⋂𝑈𝑈(𝑎) 

8.2.2 Supporting Update Category 
The next update category is defined in this work as “Supporting” object update 

patterns. Supporting traces are traces that are updated by exactly one action, but may 

not be updated with every instance of the action. The most common reason why a 

trace may not be updated is because if an instance of the action occurred, and then 

some time later occurred again, the operating system may access a copy of the object 

that is in memory, or cached elsewhere. In this case, the original object may not be 

accessed directly on disk, and its corresponding timestamp may not be updated. This 

property, however, appears to be controlled by the operating system, and no 

discernable pattern of when an in-memory copy would be used was found. Supporting 

update categories can be defined in terms of the model as follows: 

𝑆𝑈𝑃𝑃 𝑎 = 𝑈𝑈 𝑎 \𝐴𝑈(𝑎) 

Supporting traces are the set of all timestamps uniquely, but not always updated by 

the action. 
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8.2.3 Shared Update Category 
The third update category is defined in this work as “Shared” object update patterns. 

Shared traces are traces that are updated by more than one action, and are either 

always updated or not always updated respective to the action that is acting upon the 

object. For example, if two actions updated the same object, one action may update 

the object on every instance of the action, while the second action may sometimes 

access a cached version of the object. Shared object updates can be described in terms 

of the given model as follows: 

𝑆𝐻𝐴𝑅𝐸𝐷 𝑎!,𝑎!,… ,𝑎! = 𝑈 𝑎!   ⋂  𝑈(𝑎!)  ⋂…⋂  𝑈(𝑎!) 

8.3 Object Time Stamp Update Threshold 
The object time stamp update process is not instantaneous. In order to accurately 

differentiate between multiple action instances, trace update duration must be defined 

for the particular action. The trace update times, in seconds, of the action instances 

“Open Internet Explorer 8” and “Open Firefox 3.6” were surveyed on 25 computer 

systems running Windows XP or Windows 7, with results shown in Figures 8.1 and 

8.2 from survey data given in Appendix C. The results show that action instances’ 

update duration will be different depending on the hardware of the system, as well as 

the state of the software. Because the time for a trace to be updated is variable, it must 

be described as a range. From experimentation, it was determined that the object 

update times may be modeled as a normal distribution. A standard deviation (σ) of 2σ 

was chosen as the standard threshold limiter to attempt to reduce unlikely outliers. 

This decision was made based on the fact that if the threshold is too large, then 

multiple instances of an action may be considered as one instance. A 2σ limit will 

cover approximately 95% of the distribution, effectively allowing outliers to be 

detected as multiple instances of the same action. 
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Figure 8.1 Graph of the time in seconds it took for the action ‘Open Internet 
Explorer’ to complete on the tested system ordered from shortest to longest run 

 

 

Figure 8.2 Graph of the time in seconds it took for the action ‘Open Firefox’ to 
complete on the tested system ordered from shortest to longest run 
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For the action “Open Internet Explorer 8”, the average trace update duration was 27.4 

seconds, with a standard deviation of 16.76 seconds. The update threshold with a 2σ 

limiter is from 0 to 61 seconds. Figure 8.3 shows a histogram of then given data 

specifically for the action ‘Opening Internet Explorer’. From Figure 8.3 it can be seen 

that update durations become fewer as time increases. In this case, the majority of 

update durations took place between 8 and 42 seconds after the action instance. After 

which there was a decline in the number of update durations per interval, with no 

update duration that lasted longer than 76 seconds. 

 

Figure 8.3 Histogram of Internet Explorer update interval times in seconds where the 
X axis is time in seconds and the Y axis is the number of occurrences within the 

update duration 

By modeling the data as a normal distribution, a standard threshold limiter (θ) can be 

calculated, which, in the case of Opening Internet Explorer, limits the maximum 

update threshold to 61 seconds. 

For the action “Open Firefox”, the average execution update duration was 24.5 

seconds, with a standard deviation of 12.96 seconds. The threshold with a 2σ limiter 

is from 0 to 50 seconds. Figure 8.4 shows a histogram of then given data specifically 

for the action ‘Open Firefox’. From Figure 8.4 it can be seen that update durations 

become fewer as time increases. In this case, the majority of update durations took 

place between 12 and 39 seconds after the action instance. After which there was a 

decline in the number of update durations per interval, with no update duration that 

lasted longer than 48 seconds. 
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Figure 8.4 Histogram of Firefox update interval times in seconds where the X axis is 
time in seconds and the Y axis is the number of occurrences within the update 

duration 

By modeling the data as a normal distribution, a standard threshold limiter (θ) can be 

calculated, which, in the case of Opening Firefox, limits the maximum update 

threshold to 50 seconds. 

8.3.1 Action Instance Time Span Approximation 
With knowledge of the object update threshold associated with a particular action, the 

time of the action instance may be approximated based on the associated object time 

stamp values. Objects are associated with action instances through observation, as 

shown in Section 8.6. Once objects are associated with a particular action instance, 

and have been categorized by their update patterns, the time span in which the action 

instance must have happened can be approximated. 

First, each time stamp value in the set of returned time stamps is sorted from oldest to 

newest. For all objects where difference in time starting from the oldest to newest 

returned time stamp value is less than or equal to the action instance update threshold, 

these objects are grouped. The approximate time span of the action instance that 

updated each object is greater than or equal to the most recently updated (newest) 

time stamp in the set of grouped objects minus the action instance update threshold, 

and is less than or equal to the least recently (oldest) time stamp in the set of grouped 

objects. 

For example, an action instance associated with time stamps t1 and t2 may be 

approximated based on the maximum action instance threshold where the instance 

must have occurred in the timespan before the least recent timestamp t1 and most 

recent timestamp t2 minus θ. The time-span in which the action instance may be 
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bound is denoted as (t2 – θ) ≤ i.τ ≤ t1. This time-bounding method to approximate the 

time of the action instance is shown in Figure 8.5. 

 
Figure 8.5 Action instance time-span approximation based on time bounding before 

the least recently updated timestamp (t1) and the most recently updated timestamp (t2) 
minus the action’s associated update threshold (θ). 

Using this method, approximation of the time-span in which each action instance 

must have occurred may be determined. However, if the trace update time lies within 

the object update threshold of multiple actions, then determination of which specific 

instance updated the timestamp is impossible. 

8.4 Signatures of Action Instances 
This work submits the hypothesis that signature based methods may be used to 

automate the trace observation, action inference and action instance approximation 

tasks. For the task of observation, the list of associated object time stamps (Ti) and 

their relation to the action instance must be known. For action instance execution 

approximation, the action instance execution threshold (θ) is required, where an 

unknown (null) value equals any time in the past. And for the inference task, 

understanding of the underlying relation between the observed facts and the inferred 

conclusion is required. Knowledge of the system may be encoded as a trace update 

consistency-checking function (cm). From this, a signature is defined as: 

 𝑆 = {  𝑇𝑖, θ, 𝑐𝑚} 

where 

• Ti is the set of object-timestamps pairs, where objects and their timestamps 

are updated by the action aa 

o 𝑇𝑖 = [𝑜, 𝑡]     𝑡 ∈ 𝑜, 𝑡 ∈ 𝑈(𝑎𝑎)} 

• θ = Φ( Δτ1, Δτ2,  Δτ3,  Δτ4 …) 

Time 

t2 t1 
t2 - θ 

Time-span of i.τ 
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o Φ is a threshold calculation function that accepts the set of 

experimentally determined Δτ for a number of aa executions and 

calculates θ as discussed above. 

• cm is the update consistency checking function specific to the category of 

object update patterns that tests some property of objects and timestamps 

comprising 𝑇𝑖 

 
This section, however, will focus on the update consistency checking function (cm), 

and the definition of three main time stamp related update patterns. 

8.4.1 Core Object Time Stamp Consistency 
Core object time stamps are defined as a subset of time stamps Score in T that are 

updated to the current value of the system clock on the occurrence of each execution 

of a single, specific action. 

All of the time stamps in a Core set are said to be in the ‘always updated’ time stamp 

category. Using this definition, if any trace in a Core set is observed then it can be 

inferred that the action instance must have happened since the artifact relates to one, 

and only one, action. 

Also, since Core time stamps are ‘always updated’, it is expected that each time stamp 

will be within a certain time range of each other depending on the particular object 

update threshold of the action. 

An example of a Core trace would be a configuration file that is always modified 

when its related program, Program X, is closed. If the configuration file were only 

modified when Program X is closed, the modification time stamp of the configuration 

file would be a Core trace for the action “Close Program X”. 

From this definition, an object time stamp update consistency function (CoreTest) can 

be derived to test whether each object update conforms to the Core signature 

category. In the case of Core, if each trace has been updated within θ, then the 

execution time for the action instance can be time-bound before the oldest time in the 

array. Action instance approximation will be further discussed in section 8.5. 



CHAPTER 8. ANALYSIS OF ACTION INSTANCE OBJECT UPDATE PATTERNS 

112 

First, a function getTraceStates is defined (Table 8.1) to return the state of time 

stamps of all objects defined in S. For each object specified in the signature, add the 

object, time stamp and time stamp value to the array TraceStates. 

Table 8.1 Algorithm getTraceStates that returns an array of doubles with the object 
and timestamp identifier, and the current observed value of the timestamp 

ALGORITHM getTraceStates(O’, S) 

//Input: All objects in the final state of the system (O’), a signature (S) containing a 
list of objects and timestamps; an update threshold; and a consistency-checking 
function 

//Output: An array of doubles with the object and time stamp identifier, and the 
current observed value of the timestamp 

foreach object in S that are a subset of O’ 
     add the [[object, timestamp], value] double to the array TraceStates 	  
done 
return the list of doubles in TraceStates	  
 
Next, the function CoreTest (Table 8.2) defined that accepts an object update 

threshold and the TraceStates array. First the TraceStates array is sorted based on the 

time stamp values, where element 0 is the oldest and n-1 is the newest (most recent) 

time stamp value. If the oldest time stamp value in TraceStates plus the object update 

threshold is less than the most recent time stamp value in TraceStates, then the Core 

traces are not consistent. If the oldest time stamp value plus the object update 

threshold is greater than the most recent object update value, then the Core traces are 

considered consistent. The function CoreTest returns the array Detected, which is a 

single element array containing a double with the oldest and most recent time stamp 

values in TraceStates. 

Table 8.2 The algorithm CoreTest that returns an array with the oldest and most 
recent time stamp values from a given array 

ALGORITHM CoreTest(θ, TraceStates) 

//Input: The object update threshold, an array of doubles with the object and 
timestamp identifier, and the current observed value of the timestamp 

//Output: A single element array containing a double with the oldest and most recent 
time stamp values in the TraceStates array 

sort TraceStates from oldest to most recent 
if each element in TraceStates is < θ from the oldest element 
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     return the oldest and most recent time stamp values 
else 
    return null	  
 

8.4.2 Supporting Object Time Stamp Consistency 
Supporting object time stamps are defined as a subset of time stamps Ssupport in T that 

may or may not be updated to the current value of the system clock on the occurrence 

of each execution of a single, particular action instance, but that will only be updated 

by a single, particular action. 

Supporting object time stamps are in the ‘irregularly updated’ time stamp category. 

However, similar to Core signatures, if any trace in a supporting signature is detected, 

then it can be inferred that the action instance must have happened since the trace also 

relates to one, and only one, action. 

A time stamp can be irregularly updated if, for example, a file is cached in memory 

after the first execution of an action. If the file data cached in memory, rather than the 

file on disk, is accessed on the next execution of the action instance then the trace 

update will not be observable on the disk. In this case the original file’s meta-data on 

disk would not be updated on the execution of the second action instance. 

From this definition, an object time stamp update consistency function (SupportTest) 

can be derived to test whether each trace conforms to the supporting signature 

category. In the case of supporting, if each trace has been updated within θ, then the 

execution time for the action instance can be approximated to be at, or shortly before 

the oldest time in the array; however, objects may not always be updated. If any 

object time stamp is updated outside of θ from another related object time stamp, then 

it can be inferred that a separate instance of the same action must have happened. 

The function SupportTest is defined (Table 8.3) that accepts an object update 

threshold and the TraceStates array. First, the TraceStates array is sorted based on the 

time stamp values, where element 0 is the oldest and n-1 is the newest (most recent) 

time stamp value. Each object time stamp value is compared to the oldest time stamp 

value in the TraceStates array. The comparison takes place until the time stamp value 

plus the object update threshold is less than the newest compared time stamp value in 

the array. When this happens, all time stamp values are assigned to the action instance 
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that must have occurred between the oldest time stamp value and the most recent time 

stamp that is still less than the threshold. The oldest time stamp is then replaced with 

the most recent time stamp that is greater than the threshold, and the process starts 

again. 

Table 8.3 The algorithm SupportTest that returns an array with the oldest and most 
recent time stamp values from a given array grouped by update threshold 

ALGORITHM SupportTest(θ, TraceStates) 

//Input: The object update threshold, an array of doubles with the object and 
timestamp identifier, and the current observed value of the timestamp 

//Output: An array of doubles with the oldest and most recent time stamp values in the 
TraceStates array grouped by the object update threshold 

sort TraceStates from oldest to most recent 
set timeValue to the oldest time in TraceStates 
foreach element in TraceStates 
     if timeValue + θ > the current element 
          get the next element 
     else 
          add [timeValue, previous element] to array Detected 
          set timeValue to the current element value 
done 
return the list of doubles in Detected 
 

8.4.3 Shared Object Time Stamp Consistency 
Shared object time stamps are defined as a subset of time stamps Sshared in T that may 

or may not be updated to the current value of the system clock on the occurrence of 

each execution of multiple actions. 

Shared object time stamps may be either ‘always updated’ or ‘irregularly updated’ 

category types depending on the action. Since the particular trace may be associated 

with more than one action, it is possible that any associated action instance could have 

updated the trace. Thus, without additional information, the only information that can 

be inferred from the detection of a shared object time stamps is that at least one of the 

associated actions must have happened. 

An example of a shared object time stamp would be the access time stamp of a .dll 

file. Multiple actions can cause the .dll file to be accessed, so when examining the 
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system in a post-mortem environment with no additional information, each action that 

causes the .dll file to be accessed has the same probability to have updated the 

accessed time stamp. 

From this definition, an object time stamp update consistency function – SharedTest – 

is derived (Table 8.4) to test whether each trace conforms to the shared object update 

category, and determine what action the trace is associated with. In the case of the 

shared category, if each trace has been updated within θ, then the execution time for 

the action can be approximated to be at, or shortly before the oldest time in the array; 

however, objects may not always be updated. If any object is updated outside of θ 

from another object, then a separate execution of the same action may be inferred. 

Traces may also be associated with multiple actions. Because of this, additional 

context is needed to determine which action caused the trace. Action-to-trace 

association methods, and their weaknesses, will be discussed further in Chapter 9. 

Keeping with the currently defined signature creation model, at best what can be said 

when observing a shared trace is that all actions associated with the trace could have 

happened within their respective update thresholds. For this reason, the consistency 

checking of a group of shared objects is much like consistency checking of supporting 

objects. Each object time stamp value is compared from oldest to most recent. Each 

time stamp is considered to be associated with one action instance if the value is 

within the update threshold. The result is an array with multiple instances of the 

action. In the case of a shared signature, the objects may be tested more than once, 

since they will be present in multiple signatures. This means that a trace may be 

associated with multiple actions, and all actions associated with the shared trace are 

assumed to have happened. 
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Table 8.4 The algorithm SharedTest that returns an array with the oldest and most 
recent time stamp values from a given array grouped by update threshold 

ALGORITHM SharedTest(θ, TraceStates) 

//Input: The object update threshold, an array of doubles with the object and 
timestamp identifier, and the current observed value of the timestamp 

//Output: An array of doubles with the oldest and most recent time stamp values in the 
TraceStates array grouped by the object update threshold 

sort TraceStates from oldest to most recent 
set timeValue to the oldest time in TraceStates 
foreach element in TraceStates 
     if timeValue + θ > the current element 
          get the next element 
     else 
          add [timeValue, previous element] to array Detected 
          set timeValue to the current element value 
done 
return the list of doubles in Detected 
 

8.4.4 Determination of Multiple Action Instances 
From the three main consistency functions defined, traces will be associated to the 

same action if each has been updated within the given object update threshold. To 

reiterate: in the situation of an overlap of two actions instances where a trace could be 

associated with either instance of the action, a search for the oldest and most recent 

timestamp in the set will be conducted. If the update duration between the oldest time 

stamp value and the most recent time stamp value is greater than the defined object 

update threshold, then at least two instances of the action must have happened. For 

example, a time stamp t2 is observed. t2 is associated to an action whose signature 

consists of the set {[o1, t1], [o2, t2], [o3, t3]}, and whose threshold (θ) is 60 seconds. 

If t1 = 12:59:30, t2 = 13:00:00, and t3 = 13:00:58 then t2 – t1 < θ and t3 – t2 < θ. In 

this case t1 and t3 could be associated to the same action instance since θ < 60 when 

compared to t2, even though θ < t3 – t1 = 88. To handle this situation, when a trace is 

found, all existing time stamp values associated to the action (all time stamps in the 

signature) are observed and sorted. The oldest time stamp value is then used as the 

point from where all other returned time stamps values are compared. If any time 
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stamp is greater than θ from the oldest time stamp, then multiple instances of the 

action must have happened. 

8.5 Action Instance Signature Portability  
To be practical, once a list of traces associated with a certain action is generated and 

classified, the related objects and traces must then be generalized to allow identified 

traces to be detected on suspect systems other than in the test environment. This must 

take into account system-unique usernames, program paths, etc. To do this, any user 

or system-specific paths would have to be generalized. Take the Windows prefetch 

file as an example: 

  C:\Windows\Prefetch\IEXPLORE.EXE-27122324.pf 

The system-unique identifiers, in this case the system drive and the string of numbers, 

would need to be replaced with variables, as so: 

%SystemRoot%\Prefetch\IEXPLORE.EXE-%s.pf 

Where the variable %SystemRoot% is the location of the Windows system folder 

including the drive and path, and %s is a string of numbers and letters. 

The generalization should include the possibility that programs may be installed in 

non-default locations. This means that other information sources, such as reading the 

installation path from the Windows Registry13, may be required. This generalization 

will allow signatures generated on one system to be used in the analysis of other 

systems, however, it cannot be guaranteed to work in every situation, depending on 

how the suspect has configured his or her system. Further, generalization allows a 

greater possibility for false positives. For example, if the prefetch folder were copied 

from one system to the suspect system, this copy of the prefetch folder would also 

likely be detected, and considered part of the suspect system. 

To be usable a generalized object must be as generic as possible while still returning 

the correct object from the suspect system with no false positives. In this work, we 

propose the use of Regular Expressions for pattern matching objects defined in 

signatures. 
                                                
13 One Windows Registry key containing installed program path information is: 
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Uninstall 
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8.5.1 Regular Expression Representation for Object Detection 
When attempting to generalize objects in a signature, the object entries must be able 

to match a range of possible file paths and names while at the same time returning 

only objects related to the action. These paths and names may contain random strings 

that differ between systems, but the overall path and file name structure may have a 

detectable pattern. The second generalization is the particular trace of interest 

associated with the object. For example, a specific time stamp of interest. These two 

pieces of information allow for the observation of the state of the trace in a random 

system. 

Regular expressions14 are a commonly used, flexible method to match patterns of 

characters. The pattern generalization will depend on the input and trace of interest, 

but for the purpose of this example the output of The Sleuth Kit’s mactime15 

command will be used to match file path, name and time stamp information. Object-

trace pairs in the set Ti can be defined as regular expressions to support portability 

and allow analysis of the many file system types that The Sleuth Kit supports. An 

example of objects and traces converted to regular expressions is shown in Table 8.5. 

This table shows that time stamps of interest (from the mactime format) are in the 

form “macb”, representing modified, access, and created times for the object (Carrier 

2009). If the object’s modified time stamp is of interest, the time stamp of interest can 

be generalized in the form of a regular expression as “m[a|\.][c|\.][b|\.]”. Meaning that 

the modified (m) time is required, and the other timestamps (acb) may or may not be 

set. This will return the time associated with the modified time stamp regardless of the 

value of the other time stamps. 

Objects are characterized by their filename and path. Objects can also be generalized 

by determining the minimum amount of information that is needed to uniquely 

identify the object while still returning the expected object and no false positives or 

negatives. When trying to access the same object in the same operating system, just 

installed on different hardware, generalization should allow the object to be installed 
                                                
14 For more information on Regular Expressions, see 
http://www.bsd.org/regexintro.html 
15 For details on The Sleuth Kit’s mactime format and how it represents mac times 
from different operating systems, see 
http://wiki.sleuthkit.org/index.php?title=Mactime_output 
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on a different logical partition, account for differing user names, or allowing for 

random strings in the file name. From the previous example: 

C:\Windows\Prefetch\IEXPLORE.EXE-27122324.pf 

Instead of using system-specific variables, regular expressions could be used. The 

result may be similar to: 

.*/Prefetch/IEXPLORE\.EXE-.*\.pf$ 

By using the “match any character any number of times (.*)” regular expression, the 

system drive and Windows system folder can be generalized. In this example, if the 

prefetch folder is moved to any other location it can still be detected as long as it is 

not renamed as well. If the folder is renamed, detection will fail. Also, the numeric 

string at the end of the file name correlates to the time the program was executed. 

Since this number is variable, it can also be replaced with a “match any character any 

number of times” expression. Since the remainder of the filename is very specific, this 

will allow the correct object to be located by file name even if the numeric string 

changes. 

Table 8.5 Firefox trace category, trace and corresponding object of interest 

Type 
(cm) 

Time stamp 
(trace) 

Objects related to “Opening FF3” 

Core m[a|\.][c|\.][b|\.] .*/Firefox/Profiles/.*default/urlclassifierkey.\.txt 

Core m[a|\.][c|\.][b|\.] .*/Prefetch/Firefox\.EXE-.*\.pf$ 

Support [m|\.][a|\.]c[b|\.] .*/Prefetch/Firefox\.EXE-.*\.pf$ 

Support [m|\.][a|\.]c[b|\.] .*/Firefox/Profiles/.*default/cookies.sqlite-journal 

Support [m|\.][a|\.]c[b|\.] .*/Firefox/Profiles/.*\default/urlclassifierkey.\.txt 

Support [m|\.][a|\.]c[b|\.] .*/Firefox/Profiles/.*default/startupCache$ 

Support [m|\.][a|\.]c[b|\.] .*/Firefox/Profiles/.*default/pluginreg.dat 
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8.6 Experimentation  
To determine the action that is the cause of a particular set of objects being updated, a 

method of repeatedly observing the effect of an action instance on the system is 

proposed. A basic method has been defined by James, Gladyshev et al. (2010), where 

Windows Sysinternals Process Monitor16 (procmon) is used to monitor file system 

activity in a Microsoft Windows system while a particular action is executed. This 

produces a comprehensive list of object time stamps that are updated because of the 

given action instance. By executing the action many times and analyzing each update 

result, the object time stamp update patterns can be determined. From this, action 

traces can be categorized by their update patterns. Along with the determination of 

associated traces, normal execution duration for the action must also be defined to be 

able to approximate the time in which the action instance occurred. 

8.6.1 Identification of Action Instance Traces 
This section will discuss the process of deriving objects and timestamps associations 

for a given action. This example will focus on the action “Opening Internet Explorer”. 

The experiment in this section will be conducted on computer running Windows XP 

service pack 3 with Internet Explorer 8.0.6001.18702, all with default settings. 

Windows XP was chosen because according to James (2010; 2011), at the time of this 

work Windows XP was still the most commonly encountered operating system by 

surveyed Law Enforcement in digital forensic investigations. 

In the first exploratory analysis, Microsoft Process Monitor17 (procmon) was used to 

record all system calls executed during the action “Opening Internet Explorer 8 

(IE8)”. The initial tests recorded all system activity. The action was executed 400 

times per test via a macro utility that can repeatedly simulate mouse and keyboard 

interaction. In order to minimize noise (unrelated system calls) generated by other 

running processes, the entries that were not present during every run were removed. 

Three of these tests were conducted with 400 action executions per test. The filtering 

process reduced the number of traces from around 11,000 to approximately 4,000 

(Figure 8.6), however noise was consistently found to be present.  
                                                
16 More information on Procmon can be found at: http://technet.microsoft.com/en-
us/sysinternals/bb896645 
17 http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx 



CHAPTER 8. ANALYSIS OF ACTION INSTANCE OBJECT UPDATE PATTERNS 

121 

 

Figure 8.6 Removal of noise caused by background processes where the x-axis is the 
number of times Internet Explorer has been run and the y-axis is the number of traces 

common to each test 

Using this data it was determined that by filtering the Process Monitor output with the 

selected program’s process name (iexplore.exe), as well as the “explorer.exe” process, 

similar results of around 4,000 traces could be achieved without needing to repeat the 

action hundreds of times. 

From the exploratory analysis, three observations were made. First, that when using 

procmon to monitor the resulting traces of an action that causes one specific process, 

filtering procmon for all but that specific process was able to reduce noise while still 

detecting the same related traces. Next, object and trace derivation and categorization 

is a two-phase process, which will be discussed further in section 8.6.2. And finally, 

objects that are not always updated may still be associated with the action, and should 

not be filtered. 

8.6.2 Object and Trace Derivation and Categorization 
Object to action relation derivation consists of two distinct phases. Phase 1 involves 

determining the objects associated with the particular action instance. Phase 2 

involves determining which specific object time stamps are updated by the action 

instance as well as the time stamp update pattern needed to specify the associated 

consistency-checking model. These phases will be illustrated with examples for 

deriving signatures for Internet Explorer 8 (IE8) and Firefox 3.6 (FF3). 

 



CHAPTER 8. ANALYSIS OF ACTION INSTANCE OBJECT UPDATE PATTERNS 

122 

Phase 1: To determine the traces associated with starting IE8, Process Monitor was 

started and configured to filter out system calls not associated with the “iexplore.exe” 

and “explorer.exe” processes. The procmon capture was then cleared and IE8 was 

opened. After 120 seconds the procmon capture was stopped and exported as a 

comma separated value (.csv) file, an excerpt of which is given in Appendix D. This 

process was completed 10 times, after which all 10 resulting files were combined. 

Duplicate entries in the combined file were removed so each line is unique. This file 

is then renamed to the action being tested and given a .sig extension. In this case the 

file name is, ‘IEOpen.sig’. The resulting file contains a list of paths of files and 

Registry keys that are somehow accessed during the opening of Internet Explorer 8. It 

contained 3,161 file and Registry traces. Most of which, however, were Windows 

Registry entries that were not Registry keys, and therefore have no associated 

timestamp information.  

The same process was conducted for FF3. An excerpt of the resulting procmon output 

is given in Appendix E. In this case the resulting activity signature is named 

‘FFOpen.sig’. The resulting file contains a list of paths of files and Registry keys that 

are somehow accessed during the opening of Firefox 3.6. It contained 1,923 file and 

Registry traces. Most of which, however, were Windows Registry entries that were 

not Registry keys, and therefore have no associated timestamp information. 

The result of Phase 1 for signature derivation is a list of all objects that were modified 

or accessed during the time that the experiments took place for the single action that 

was being tested. 

Phase 2: Phase 2 involves observing the identified object update patterns to 

determine the specific traces related to the action. A Perl script ‘sigtest.pl’ (Appendix 

F) was written to retrieve the associated file and Registry timestamp value 

information from the objects identified in Phase 1. 

To observe the behavior in which the identified object time stamps are updated when 

the action takes place, IE8 and FF3 were opened respectively as before. The 

difference from the first phase is that procmon was not used, and after each action 

instance, ‘sigtest.pl’ was executed to output the time stamp values of the file and 

Registry entries specified in the previously created ‘IEOpen.sig’ and ‘FFOpen.sig’ 

files. ‘sigtest.pl’ was executed between 5 and 20 minutes after the action instance. 
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This process was carried out 10 times over three days for each type of action, with 

each action instance time being recorded. An excerpt of the produced file timestamp 

information is given in Appendix G. By comparing object timestamps in relation to 

the known time of the action instance, time stamp update behaviors can be analyzed 

from which update patterns can be derived. 

8.6.3 Object Time Stamp Update Behavior Analysis 
From the data produced in the previous section, a manual analysis of timestamp 

update behaviors took place. This section details the analysis of update patterns for 

Internet Explorer 8, however, the same major update patterns were also found for 

Firefox 3.6. For each action instance that was recorded, a timestamp would either be 

before (not updated), or after (updated) at the same time as the action instance. Based 

on these update patterns over the 10 recorded instances of the action, timestamp 

update behaviors can be determined. 

This section will list the observed object time stamp update patterns that will be used 

to define specific trace update categories. Note that in Windows XP each file has 

three associated timestamps, and therefore the same object may be listed multiple 

times. 

• Always Updated File and Registry Key Timestamps (AU): It was observed that 21 

file and Registry time stamps were updated each time IE8 was opened, however, 

other processes could have updated these time stamps as well. Of these, 9 files 

had updated ‘accessed’ times, 10 files had updated ‘modified’ times, and 9 

Registry keys had updated ‘modified’ times. This specific category can be further 

subdivided into five more-specific update categories based on the uniqueness of 

observed update patterns. These subcategories are explained as follows and are 

summarized in (Table 8.6): 
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Table 8.6 Internet Explorer 8 Always updated sub-category update patterns showing 
which object time stamps are updated, unchanged, or unpredictably updated 

 

o AU1: Files categorized in the AU1 group were found to update their accessed 

and modified time stamps every time Internet Explorer was started, but also 

with the execution of unrelated actions. Of these it can be said that their 

updated timestamps must be greater-than or equal to the time of the most 

recent execution of IE8. It was also observed that the created time stamps of 

these files are less-than or equal to the installation of the operating system 

itself. 

o AU2: Files categorized in the AU2 group were found to have their accessed 

and modified time stamps updated with each execution of IE8. Of these files, 

one was the prefetch18 file for Internet Explorer. Its created timestamp was 

found to correlate with the first time Internet Explorer was run on the system. 

Only the accessed and modified times were updated with each action instance. 

The other two files were Internet Explorer ‘cookie’ files correlating to 

‘administrator@live[1].txt’ and ‘administrator@msn[1].txt’ where 

‘administrator’ is the name of the local user account. The accessed and 

modified time stamps of these files were updated with each action instance, 

and the created timestamps were found to update often with the action 

instance, but not always and with no predictable pattern. Of these files it can 

be said that any time stamp with a value before the most recent action instance 

denotes the time of a previous action instance. 

                                                
18 More information about Windows prefetch files can be found at: 
http://www.microsoft.com/whdc/archive/XP_kernel.mspx#ECLAC 

 Modified Time Accessed Time Created Time 

AU1 Updated Updated Unchanged 

AU2 Updated Updated Unpredictably 

AU3 Unchanged Updated Unchanged 

AU4 N/A Updated N/A 

AU5 Updated Unchanged Unchanged 
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o AU3: Files categorized in the AU3 group were found to have only their 

modified, and not their accessed, time stamps updated with each opening of 

Internet Explorer 8. 

o AU4: Registry keys in the AU4 group were found to have always had their 

associated time stamp information updated. 

o AU5: Files categorized in the AU5 group were found to have only their 

accessed time stamps updated: IExplore.exe and shell32.dll. 

• Timestamps Updated on the First Run Only (FRO): It was observed that 1 

Registry time stamp was updated only during the first opening of IE8 per user 

login session19. 

• Usage-Based File Timestamp Updates (UB): It was observed that 4 Windows 

shortcut (.lnk) files’ accessed time stamps were updated often, but not always 

when they were used to start IE8. If they were not used to start IE8 they were 

never updated by the action instance. 

• Irregular Update of Timestamps (IU): It was observed that 93 files had ‘irregular’ 

time stamp update patterns, and each in this category had only its accessed time 

stamp updated. 

o IU1: Although the majority of the traces categorized as IU are seemingly 

irregular, it was observed that cookies within the user’s “Cookies” folder were 

always updated on the first run of the session, and then irregularly updated 

during the starting of IE8 in the same user login session, making cookie files a 

combination of FRO and IU. 

8.6.4 Categories of Object Time Stamp Update Behavior 
By design of the experiment we could observe update patterns from which four 

primary categories of object time stamp updates can be defined. Two important 

observations apply to each category. First, as previously described, in our experiments 

we observed that specific trace update patterns are the result of a specific action 

instance; for example, double-clicking an icon causes a program to execute. This 
                                                
19 A ‘user login session’ is defined as the time-span in which a user account is logged 
into the operating system until the account is logged out.  



CHAPTER 8. ANALYSIS OF ACTION INSTANCE OBJECT UPDATE PATTERNS 

126 

process is not instantaneous and therefore any observable traces were created or 

updated some time after the actual action instance. Second, it was observed that each 

trace was updated within a given period of the action instance. This means that the 

update process must also be defined as a time-span, and is not instantaneous, as 

previously discussed in section 8.3. 

Category 1: Always Updated Traces – 6 files and Registry entries with associated 

time stamp information were consistently updated each time, and only when, Internet 

Explorer 8 was opened (Table 8.7). Traces that are always updated by opening IE8, as 

well as by other actions, have been removed. The remaining traces in this category are 

defined as ‘Core’ traces, as they are the most reliably updated.  

Table 8.7 Internet Explorer 8 file and Registry traces updated each time Internet 
Explorer 8 is opened 

C:\WINDOWS\Prefetch\IEXPLORE.EXE-27122324.pf 

C:\Documents and Settings\Administrator\Local Settings\Application 
Data\Microsoft\Feeds Cache\index.dat 

HKEY_CURRENT_USER\Software\Microsoft\CTF\TIP 

HKEY_CURRENT_USER\Software\Microsoft\Internet 
Explorer\Security\AntiPhishing\2CEDBFBC-DBAB-43AA-B1FD-CC8E6316E3E2 

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Ext\Stats\{
E2E2DD38-DO88-4134-B2B7-F2BA38496583}\iexplore 

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Ext\Stats\{
FB5F1910-F110-11D2-BB9E-00C04F795683}\iexplore 

 

Category 2: Traces Updated on the First Run Only – One registry entry and all 

cookie files were found to have their timestamp information consistently updated on 

the first run of Internet Explorer 8 per user session (Table 8.8). 

Table 8.8 Internet Explorer 8 Registry trace updated during the first run of the 
session 

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\
MenuOrder\Favorites\Links 
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Category 3: Irregular Update of Timestamps – 93 files (Appendix H) were found to 

have their time stamps updated in an irregular fashion. In this case, irregular means 

that the time stamps were sometimes, but not always, updated, and no specific pattern 

could be determined. Irregular updating timestamps could potentially be caused by 

caching functions of the operating system, or other such interference that would result 

in a non-deterministic update of a timestamp given an action instance. 

Category 4: Usage-Based Timestamp Update – 4 Windows shortcut files were 

identified that were inconsistently updated when the particular link file itself was used 

(Table 8.9), and never during the starting of IE8 when the file itself was not used. 

Table 8.9 Internet Explorer 8 traces updated only when the specific trace is used (link 
files) 

C:\Documents and Settings\Administrator\Desktop\Internet Explorer.lnk 

C:\Documents and Settings\Administrator\Start Menu\Programs\Internet Explorer.lnk 

C:\Documents and Settings\Administrator\Application Data\Microsoft\Internet 
Explorer\Quick Launch\Launch Internet Explorer Browser.lnk 

C:\Documents and Settings\Administrator\Start Menu\Programs\Accessories\System 
Tools\Internet Explorer (No Add-ons).lnk 

 

Also, from the original associated object list there were a number of file and Registry 

entries that were never updated during the opening of IE8. By experiment design, 

these entries have been discarded since, during the experimentation, it is impossible to 

associate them with the specific action instance. 

8.6.5 Experiment Conclusions 
From these experiments it can be seen that a subset of updated objects related to an 

action may be derived, and trace update patterns relating to these objects – given the 

specific action – can be determined. In these experiments, specific trace update 

patterns were found with little consideration about exactly what action updated the 

trace, save the process filtering done with Process Monitor. Instead of focusing only 

on how traces can be updated, it is also important to consider the actions that can 

update a trace. For determining what actions took place in a system, both pieces of 

information are needed. 
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In order to combine the trace update patterns with knowledge about actions that can 

cause the trace to be updated, this work submits the general object update categories 

described in section 8.2. These general update categories consider both the update 

behavior of traces within the category, and how other actions can affect those traces. 

A summary of each category is as follows: 

• Core Traces 
o Always updated 
o Updated only by the single action 

• Supporting Traces 
o Irregularly updated 
o Updated only by the single action 

• Shared Traces 
o Always or Irregularly updated – respective of the action 
o Updated by two or more actions 

With knowledge of how a trace may be updated, and what actions could potentially 

update the trace, it becomes possible to determine when the most recent execution of 

an action must have, or was likely to, occur. Further, since some timestamps are not 

always updated, it may be possible to determine past instances beyond the most recent 

instance of the action.  

In these experiments, the trace derivation and timestamp update analysis process were 

both conducted using highly manual techniques. This was intended to allow a better 

understanding of trace update patterns than have been demonstrated in prior works 

using automated techniques such as Khan (2008), however, manual analysis for all 

actions is impractical, and automation that can be focused at the previously derived 

level of specificity should be used. Automation would increase the feasibility, and 

potentially the accuracy, of such object update behavior analysis techniques. 

8.7 Summary 
This chapter described the derivation of action instance object update patterns. A 

practical method for determining the relation between actions and object update 

patterns was given. Analysis of object update patterns allows traces to be categorized, 

and rules of consistency to be determined. The need for object update thresholds has 

been discussed, and a method for determining the object update threshold for an 

action was given. After, a brief discussion and method for generalizing signatures for 

portability across suspect systems was given. Finally, an overview of the object trace 

update experimentation used to derive general categories was given. 



 

 

Chapter 9 

Automatic Event Reconstruction Using Signature Based 
Analysis 
This chapter begins by discussing the inferences of single and multiple occurrences of 

a given action instance based on the previously discussed signature matching 

methods. Consistency between object updates as well as higher-level consistency 

between actions is discussed. A probabilistic method for associating traces to actions 

when uncertainty exists is given, and the issues with such a method are discussed. 

Next, generic matching of action instances based on no prior information is then 

briefly described, with case examples explored and weaknesses given. After, high-

level event reconstruction using the proposed signature-matching model is discussed 

that enables more actions to be inferred based on the presence of previously inferred 

action instances. Finally, the use of the proposed signature-based hypothesis reduction 

methods for human inference verification in digital forensic investigations is 

discussed. 

9.1 Inferring Actions from Trace Observations 
As previously shown, the state of a system changes as a direct result of actions that 

take place. Causal relations between actions and object updates can be observed, from 

which object update models can be constructed. As shown, if the action, resulting 

traces and the causal link between the occurrence of the action and trace creation is 

known, then the action can be inferred from observation of the collection of traces. In 

Chapter 8, derivation of traces updated with a given action and system update model 

creation was shown. This allows for the creation of a signature that encodes the 

knowledge needed to infer a given action instance. This knowledge, however, 

requires an observation of the state of a given system before it can be utilized. The 

observed state combined with the depth of encoded knowledge determines what 

information may be inferred. 

9.1.1 Formalization of Action Instance Signature Matching 
Action signature matching is equal to observing the state of the system and using the 

knowledge encoded in a signature to infer whether the associated action has or has not 

occurred. Signature matching is a function that requires two inputs: a system to 

observe, and a signature of an action in question (as defined in section 8.4). The 
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signature matching function SignatureMatch is given below (Table 9.2). The 

signature matching function mimics the process of observing the state of the system 

by retrieving an array of the current state of traces in the set Ti.  

The previously described function getTraceStates returns the state of time stamps of 

all objects defined in S. An array, TraceStates, is returned in the form of a double, 

where the first element is the object, trace double, and the second element is the trace 

value of interest.  

TraceStates[] = [[o, t], 𝜏] 

For example, if the trace in question were a created file time stamp associated with 

the document “C:\Documents\mydoc.txt”, then getTraceState would return the object 

name, time stamp and time stamp value for “mydoc.txt”. 

 TraceStates[] = [[“C:\Documents\mydoc.txt”, created], 16:18:00] 

The signature matching function then checks the consistency of the state of the 

returned trace values. For this, the function checkConsistency is defined  (Table 9.1) 

that executes the consistency checking function specified in the given signature with 

the given update threshold and trace state values as arguments. 

Table 9.1 The algorithm checkConsistency that outputs detected timestamp values 
that pass the action’s consistency-checking function 

ALGORITHM checkConsistency(cm, θ, TraceStates) 

//Input: The trace category’s consistency-checking function, the action’s trace update 
threshold, an array containing the current state of the trace 

//Output: an array of times that are consistent with the given consistency-checking 
function 

call the consistency-checking function 
set the array InferredActions to returned results 
if array InferredActions is empty 
     exit 
else 
     return the array InferredActions 
 

 



CHAPTER 9. AUTOMATIC EVENT RECONSTRUCTION USING SIGNATURE 
BASED ANALYSIS 

131 

 

Table 9.2 The algorithm SignatureMatch that gets the current state of object 
timestamps defined in the signature, checks the returned timestamp values for 

consistency, and returns detected, consistency timestamp values representing the time 
in which the action occurred 

ALGORITHM SignatureMatch(O', S) 

//Input: The current system state, a signature for a given action 

//Output: An array of timestamp values representing the time in which the action 
occurred 

foreach object in S 
      get the value of the current object in O’ 
      assign the object and value double to the array TraceStates 
done 
call checkConsistency 
set the array InferredActions to the returned results 
return the array InferredActions 
 
checkConsistency requires the model’s consistency function (cm), the action instance 

threshold (θ) and the returned state of the traces in the TraceStates array. 

checkConsistency executes the consistency-checking function cm with the threshold 

and returned TraceStates array as arguments. The check will return an array of one or 

more consistent action instances or null if inconsistent. The particular update model 

will determine what the definition of consistency between traces. Some examples of 

inferred knowledge per signature might be: 

• the action occurred 

• the action did not occur 

• the action occurred + the time range in which the action must have occurred 

• the action occurred multiple times + the time range in which the actions must have 

occurred 

The overall hypothesis reduction algorithm is shown in Figure 9.1. In this algorithm, 

for each signature, SignatureMatch calls getTraceStates. Returned trace states are 

then checked for consistency, based on their update category’s consistency-checking 

function. If the objects are consistent, the represented action is added to the list of 

inferred actions with the detected time span, if available. Otherwise the next signature 

is tested. 
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Figure 9.1 Overall hypothesis reduction algorithm that incorporates observation of 
the state of a system (O’) and uses object update relation consistency checking from 

relation information encoded in signatures (S). 
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9.2 Inferring Single and Multiple Action Instances 
With traces that are updated every time an action occurs, information about previous 

instances of the same action will be overwritten to the newest execution time. This 

means that from these traces it is only possible to determine the most recent action 

instance. For example, Core traces must be always updated given the associated 

action. Therefore, only the most recent action instance associated with the update of 

Core traces can be inferred regardless of how many Core traces are associated with 

the signature. 

Some traces, however, are updated by the execution of a single action, but not on 

every instance of the action. As discussed in section 7.5, an action may have multiple 

trace update paths depending on the state of the system in which the action is taking 

place. For example, an action could access a file, and load the file’s contents into 

memory. On the next execution of the action, the file contents stored in memory may 

be accessed instead of the original file, meaning the file’s meta-data on disk may not 

be updated. For traces that may or may not be updated, if the trace is associated with 

one, and only one, action then it falls into the Supporting trace category. In the case of 

Supporting traces, if traces exist that are outside of the object update threshold, it can 

be deduced that previous instances of the action must have occurred for the traces to 

have been updated (or even exist). Since all traces in the Supporting signature must be 

associated with only one action, multiple update paths produce an update pattern over 

time that may reveal information about previous action instances. To illustrate, 

consider time stamps of four files related to the action “open a document”: 

Pre-fetch File: Timestamp = 0:00 
Registry Entry: Timestamp = 0:00 

.DLL File 1: Timestamp = 0:00 

.DLL File 2: Timestamp = 0:00 
 

With the first execution of the action, all trace time stamps are updated to the current 

time (6:00). The pre-fetch file is created, a Registry entry is added, and the two DLL 

files are loaded into memory: 

Pre-fetch File: Timestamp = 6:00 
Registry Entry: Timestamp = 6:00 

.DLL File 1: Timestamp = 6:00 

.DLL File 2: Timestamp = 6:00 
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The document is closed and opened again at a later time. Now assume that the 

Registry entry is only written the first time the program is opened to record the 

position of the document’s window on the screen. The window position was not 

changed, so the Registry entry is now accessed, but not written to so the associated 

time stamp would stay the same while the others were updated to the new time (7:00): 

Pre-fetch File: Timestamp = 7:00 
Registry Entry: Timestamp = 6:00 

.DLL File 1: Timestamp = 7:00 

.DLL File 2: Timestamp = 7:00 

The document was again closed, and opened at a later time. This time assume the 

window position was not changed, so the Registry entry was not updated, and the first 

.DLL remained in memory from the last execution of the program. The pre-fetch file 

is always updated, and the 2nd .DLL file was loaded into memory again, so only these 

two items would have updated timestamps (8:00): 

Pre-fetch File: Timestamp = 8:00 
Registry Entry: Timestamp = 6:00 

.DLL File 1: Timestamp = 7:00 

.DLL File 2: Timestamp = 8:00 
 

This is a crude example, but it illustrates the idea that some traces are not always 

updated during the execution of an action, and sometimes information about previous 

action instances can be inferred by looking at the total collection of associated traces. 

9.2.1 Consistency of Detected Actions 
As shown, objects associated with the same action have a certain consistency between 

them. This consistency can be checked with a defined consistency model, cm. In the 

given signature-matching model, consistency-checking models are used to group sets 

of traces associated with a particular action instance. This model, however, only 

checks for the consistency between traces with the same update pattern. Multiple 

consistency models, such as those defined in section 8.4, can exist for a single action. 

Because of this, multiple consistency functions may exist per group of objects; 

effectively meaning that multiple signatures may exists for a single action. Further, 

there are also patterns of consistency across detected higher-level actions. For 

example, Core traces must always be updated and therefore will always be the most 

recently updated traces if an action occurs. In this case it would be inconsistent to find 

a Supporting trace for the same action that was updated after the core (core + θ). To 
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illustrate, see Figure 9.2, where action 1 (A1) Core traces are detected at time 𝜏1. 

Since Core traces must be updated with each execution of A1, time 𝜏1 must be the 

most recent execution of A1. Next, A1 Supporting traces are detected at 𝜏2. Since 𝜏1 

earlier than 𝜏2, and 𝜏1 must have been the most recent execution of A1, then the 

detected Supporting traces are inconsistent. 

 
Figure 9.2 Inconsistency of traces associated with a single action detected when 

comparing the properties of different trace categories   

Inconsistency of a signature may denote incorrect trace categorization, incorrect 

consistency model generation, or the use of anti-forensic methods, such as altering 

time stamps. However, consistency checking may also allow traces to be associated 

with specific actions, as will be discussed further. 

9.2.2 Detection of Multiple Instances of the Same Action 
The proposed signature analysis model for detecting actions uses the previously 

defined classes of signatures in a layered approach to build up knowledge of actions 

that have happened in a system. To illustrate, a fictional example of this approach is 

given: 

An action, ActionX, has a Core signature (SXCore) consisting of two time stamps, and a 

Supporting signature (SXSupport) that has three associated time stamps. All object 

update thresholds are defined as 30 seconds. 

SXCore = { [(o1, t1), (o2, t2)], 30sec., Core} 

SXSupport = {[(o3, t3), (o4, t4), (o5, t5)], 30sec., Supporting} 
 

A1 Core 

Time 

A1 
Supporting 

𝜏1 𝜏2 

𝜏1 < 𝜏2 = A1 Inconsistent 
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The Shared signature (SXShared) for ActionX has two associated time stamps. Both of 

these time stamps are also associated with another action, ActionY. The Shared 

signature for ActionY is denoted as SYShared. 

SXShared = {[(o6, t6), (o7, t7)], 30sec., Shared} 

SYShared = {[(o6, t6), (o7, t7)], 30sec., Shared} 
 
The function SignatureMatch(O', S) takes the system and signature as input, and 

returns the value of the observed action instance update time-span. In this case, the 

timestamp values were chosen for the purposes of this example. 

SignatureMatch(O', SXCore) returns 

{[“4/14/2010 19:28:25”, “4/14/2010 19:28:32”]} 

SignatureMatch(O', SXSupport) returns 

{[“4/14/2010 15:13:25”], [“4/14/2010 19:28:18”, “4/14/2010 19:28:34”]} 

SignatureMatch(O', SXShared) returns 

{[“4/14/2010 19:28:25”], [“5/2/2010 9:45:02”]} 

SignatureMatch(O', SYShared) returns 

{[“4/14/2010 19:28:25”], [“5/2/2010 9:45:02”]} 

 
The result of this detection process is summarized in Table 9.3. 

Table 9.3 Summary of detected timestamps related to ActionX and ActionY 

 ActionX  ActionY 

Core 4/14/2010 19:28:25  

Core 4/14/2010 19:28:32  

Support 4/14/2010 15:13:25  

Support 4/14/2010 19:28:18  

Support 4/14/2010 19:28:34  

Shared 4/14/2010 19:28:25 4/14/2010 19:28:25 

Shared 5/2/2010 9:45:02 5/2/2010 9:45:02 

 



CHAPTER 9. AUTOMATIC EVENT RECONSTRUCTION USING SIGNATURE 
BASED ANALYSIS 

137 

Since Core signature traces are always updated and relate only to ActionX, it can be 

inferred that ActionX last happened approximately at 4/14/2010 19:28:25. Both 

ActionX Core timestamps are within θ, so the traces are consistent. 

With the knowledge of the last execution time of ActionX, the Supporting signature 

may now provide more information. In this case, two supporting traces confirm the 

last execution time (t3 and t4). Traces in the Supporting signature may not always be 

updated, as is shown by the supporting trace (t5) with a timestamp of 4/14/2010 

15:13:25. This trace is consistent since the time is before the identified last execution 

time (t1). Also, since Supporting traces are associated only with one action, a 

previous execution of ActionX must have happened at this time. 

Finally, Shared traces are examined. Each trace is associated with both ActionX and 

ActionY. The first shared trace (t6) has a timestamp that is within the last execution 

time of ActionX; however, ActionY could have also happened at this time. Calculating 

the probability of one trace belonging to a particular action has been discussed in 

Carney and Rogers (2004) and Kwan, Chow et al. (2008), and will be discussed later. 

Because of this, no conclusion can be made. The next trace, however, has a time that 

is after the detected last execution time (t1) of ActionX. Since this trace is associated 

only with ActionX or ActionY, it can be inferred that the trace (t7) must belong to 

ActionY since it is not consistent with the information known about ActionX. An 

instance of ActionY must have happened at approximately 5/2/2010 9:45:02, to be 

consistent with ActionX. 

After this analysis and using the instance approximation method described in section 

8.3.1, action instance approximations may be given, as shown in Table 9.4. 

Table 9.4 Known action execution times after signature analysis 

 ActionX ActionY 

Last Execution 4/14/2010 19:28:18 to 19:28:18 n/a 

Previous Execution 4/14/2010 15:12:55 to 15:13:25 5/2/2010 09:44:32 to 09:45:02 
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The time stamps that are known to relate only to ActionX are shown in Figure 9.3. 

The times are grouped, where θ = 30 seconds. In the case of Core and Supporting 

signatures, where the traces are related only to ActionX, the most recent, as well as 

previous executions of the action can be inferred. 

 

Figure 9.3 Graph of time stamps in T related to ActionX grouped by θ, that shows two 
distinct executions of ActionX 

This example illustrates that by layering multiple observations more information 

about previous executions of actions can be automatically inferred. Also, by building 

on already detected information, inferences about other non-related actions may be 

made. Evaluation of this method will be presented in Chapter 10, where the process is 

applied to detect actions in a real environment. 

9.3 Traces Updated By Multiple Actions 
When a single action is associated with a particular trace, the action instance can be 

inferred from the observation of the trace; however, if more than one action modifies 

the same trace, detection of the trace without any further context can only lead to a 

conclusion that at least one associated action instance must have occurred. For 

example, as seen in Figure 9.4 action A1 causes process P1 that in turn creates traces 

T1 and T2. Likewise, action A2 causes process P2 that in turn creates traces T2 and 

T3. By observing only trace T2, it is impossible to associate the trace with a single 

action. 
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Figure 9.4 Model of multiple actions (A1 and A2) causing separate processes (P1 and 

P2) that create a set of traces where both processes create trace T2 

In the case of traces updated by multiple actions, defined as Shared traces, rules of 

consistency between detected actions can help to determine which action instance the 

trace should be associated with. However, consistency checking does not remove all 

uncertainty. In these cases probabilistic methods are proposed. However, there exist 

some issues with currently proposed probabilistic methods, which will be discussed. 

9.3.1 Consistency Checking Approach to Action-Trace Association 
Consistency, as discussed earlier, exists between related objects as well as instances 

of an action (and multiple actions). When attempting to determine which action a 

trace is associated with when multiple actions could have caused the trace, additional 

context is needed. Additional context can be found by testing if the trace is consistent 

with every possibly related action. In some cases this additional context may allow for 

the detection of a logical inconsistency that would mean the trace has either been 

altered, or that the trace is not associated with the inconsistent action. 

For example, see Figure 9.5, where an action A1 is associated with a particular trace 

O1, with a time value of 𝜏2, and a second action A2 is also associated with the O1. In 

this case if the trace is associated only with A1 or A2, and A1’s Core signature is 

determined to have occurred at time 𝜏1 that is before 𝜏2, then 𝜏2 must be associated 

with A2. Additional context in this case comes from observing A1’s Core signature to 

determine when the last occurrence of A1 must have been. If the value of 𝜏2 is any 

time after A1’s Core traces, then the trace must be associated with A2.  
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Figure 9.5 Determining action to trace association by using the known behavior of 
multiple actions where 𝜏1 is the most recent instance of A1, 𝜏2 is when O1 was last 

updated, and 𝜏3 is when action A2 last occurred, showing that O1 cannot be 
associated with A1 since A1’s Core traces were detected before time 𝜏2 

Associating Shared traces to particular actions requires deriving all applicable 

consistency models, and checking the consistency of traces against already extracted 

knowledge of related action instances. This requires a multi-phase approach, where 

first action instances are detected using their own internal consistency functions, then 

higher-level consistency and grouping is done using the extracted knowledge for more 

context about the system. Composite action instance reconstruction is discussed 

further in section 9.5.  

9.3.2 Probabilistic Approach to Action-Trace Association 
Consistency checking alone is only useful when knowledge of the system and each 

action is comprehensive, and there is an inconsistency between what is known about 

the actions and the observed traces. If there is no inconsistency, no new information 

can be inferred. For example, the object O1 is shared between A1 and A2. If A1’s 

Core (found to be at time 𝜏2) and A2’s core (found to be at time 𝜏3) both have times 

that are at or after O1, then O1 could be related to either action, as illustrated in 

Figure 9.6. Since the O1 is consistent with the update pattern of both A1 and A2, 

consistency checking cannot determine the action-trace association. 
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Figure 9.6 A shared trace that is earlier than both associated actions cannot be 

associated to a specific action using consistency-checking methods since the trace is 
consistent with both actions 

In cases such as this, where it cannot be determined if an object is associated to either 

action A1 or action A2, methods that attempt to deal with uncertainty must be used. 

Effectively, our method generates hypotheses automatically, and probabilistic 

methods work where our hypothesis generation process stops. In this work, 

probabilistic methods will be introduced, and issues with these methods when making 

claims about criminal activities that have been derived under uncertain circumstances 

will be discussed. For example, Shen, Keppens et al. (2006) stated that “legally, 

assigning probabilistic values to individual pieces of evidence poses the danger of 

trespassing into the territory of the jury”. A number of probabilistic methods have 

been proposed including Shen, Keppens et al. (2006) and Khan (2008). However, 

these methods suffer from a number of issues discussed below. 

9.3.2.1 Issues with Probabilistic Methods 
There are a number of issues that arise when attempting to use probabilistic methods 

when reasoning about evidence. This work will focus on two of the main issues 

encountered: 

1) Decreasing probability of a hypothesis when an artifact is missing 

Overill, Silomon et al. (2010) claimed that a lack of evidence is not grounds to 

decrease probability of the action happening. Especially since anti-forensics is 

becoming more common. A human investigator has the luxury of being able to apply 

prior knowledge; many case examples and also utilize their intuition, or “gut” feeling. 

Investigators also have the ability to observe the state of the system and then update 

their knowledge – by doing research or asking others – in relation to their findings. 

A2 
Core 

Time 

A1 
Core 

T1 T3 T2 

O1 



CHAPTER 9. AUTOMATIC EVENT RECONSTRUCTION USING SIGNATURE 
BASED ANALYSIS 

142 

After, they can continue the investigation with this updated knowledge. A 

probabilistic system, however, is limited to the scope of objects for which it 

previously knew the relation. If new knowledge cannot be created – e.g. knowledge of 

a previously unknown artifact-cleaning program – then reduction of the probability of 

the hypothesis based on the lack of artifacts is incorrect. Also, the weight of a given 

artifact is another issue. Assume a Core artifact, as previously defined, had a weight 

that was greater than a Shared artifact, but all of the artifacts defined as Core and 

Supporting were maliciously deleted. The lack of these removed artifacts would have 

a combined weight that would reduce the probability of the malicious hypothesis 

below other possible hypotheses where all artifacts were found. Likewise, if an 

alternative hypothesis is assumed where the absence of all, or most, artifacts denotes 

anti-forensics, this also gets an investigator no closer to the truth since it is just as 

likely that the event actually did not happen. 

2) Prior Probability 

When using probabilistic methods, knowledge of the probability of the trace creation 

happening is necessary when attempting to determine action-trace association. 

Observation of the creation of a trace given a particular action instance is important 

for attempting to determine the likelihood of association with an action; however, this 

information alone assumes that each action has an equal likelihood of happening. This 

likelihood, however, will depend on the user’s personal habits that cannot be 

determined without monitoring the user. Kwan, Chow et al. (2008) attempted to get 

around this by determining prior probability of an action from the experience of 

surveyed investigators. However, the probability should be based on the particular 

user’s action, not the probability that an investigator will encounter evidence of an 

action. Likewise, accurate probabilities of this type are difficult to acquire from an 

investigator as it is based on their subjective feeling as well as observation. In other 

words, determining which action is more likely to occur in a system may only be able 

to be generalized for a population, but the specific probabilities for the user may not 

be accurate, and could lead to false conclusions. 

There are two main issues with prior probability generation for an action in a system. 

The first is that each user has a unique probability to execute a particular action. One 

user, for example, may be more likely to execute Internet Explorer many times in a 

session, while another is more likely to execute Internet Explorer only once per 
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session, if at all. The second is that prior probabilities are not only user-specific, but 

also regionally specific. For example, QQ is a popular Chinese instant messenger 

program, however, Europeans do not often use it. If European investigators were 

asked to give a probability for QQ usage in crime, the probability would likely be 

very low. But in China the probability would likely be much higher. The prior 

probabilities determined in Kwan’s work then are, at best, only relevant to the 

country, and possibly even the specific region in which the survey was conducted. 

Even when confined to a specific region, the prior probability is still also 

generalization when considering each individual user. 

Khan (2008) demonstrated an approach to determine not the prior probability of the 

event occurring, but of the probability of the event modifying a trace. The weakness 

of this method is that an action’s likelihood to modify a trace when it is executed says 

nothing about the likelihood of the action occurring. The proposed method, then, 

could return an action as the most likely to have happened, even if the system is 

incapable of executing the action, or if the user would never execute the action. 

9.4 Inferring Actions Instances with Limited Information (Generic 
Matching) 
Thus far, the detection of known actions has been discussed. Signatures are used to 

describe a causal relation between a known action and the resulting traces. However, 

some knowledge of the occurrence of actions in a system may possibly be determined 

if the particular action, and therefore specific traces, are unknown beforehand. This 

inference of unknown actions still uses the causal relation between an action and its 

resulting traces, but in a highly generic way. The inference is based on the given 

model that states for any object to exist in a system, some event must have caused the 

object to exist. If the object is observed and the object’s associated meta-data has been 

updated beyond the creation time, some action must have updated the object. Based 

on these properties, two methods are proposed for generically determining action 

instances.  

One general action detection method relies on the fact that some actions create 

completely randomly named objects, but in specific, known locations. If the object 

itself cannot be specifically identified beforehand, but if every object in a location – a 

directory, for example – has the same relation to the action, then each object in the 
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given location denotes the same type of action occurring. An example of this method 

is given in section 9.4. Using this method, if each object in a certain directory can be 

associated with a certain action – “browsing the Internet”, for example – then an 

instance of the action “browsing the Internet” may be inferred if objects exist in the 

directory. In this case, all objects in the directory are in the set Ti. Since the action’s 

trace update timestamp is unknown, the object update threshold would need to 

account for any, or perhaps an average, timespan. In this case, for example, an object 

update threshold could be used to attempt to differentiate between “browsing the 

Internet” sessions. Finally, if a particular consistency between objects was known, 

then cm could be created for the generic action. 

The next general action detection method is based on the fact that in a real-world 

system, actions manifest themselves as a collection of time stamps updated within a 

certain time-span of each other. For example, Farmer and Venema (2005) used trace 

clustering over large collections of deleted file meta-data to determine the time and 

date the source was packaged for distribution (Figure 9.7). Their method illustrates a 

basic example of using meta-data to detect a particular time a user or system action 

took place. 

 

Figure 9.7 Signature analysis of file system activity associated to rootkit installation. 
Farmer, D. and W. Venema (2005). Forensic Discovery, Addison-Wesley 

Professional. 

For this method, when the state of the system is observed, instead of relying on 

specific corresponding objects, all objects within a defined generic θ will be grouped 
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and defined as related to the same generic event. When a large number of objects are 

updated within a short period of each other, they may be associated with the same 

action. For example, as shown in Appendix I, a collection of artifacts related to the 

time "2010 10 18 Mon 17:13" are detected in a system. Of the 88 objects returned, all 

have either a direct or indirect relation to Internet Explorer, or Internet activity in 

general. In this case, the specified time could at least be flagged so an investigator 

may manually determine the nature of the event. This method could be augmented 

with case-based reasoning, or correlated with known signatures to determine what 

type of actions the detected event relates to. A basic analysis of the practicality of this 

method is given in section 9.4.1. 

9.4.1 Generic Action Signature Matching 
Generic signature matching, as discussed, allows for the detection of action instances 

when little or no information is known about the action before observing the state of 

the system. Generic signature matching uses the observation that many actions update 

traces on a system within a short period of the action instance. Based on this, an 

action instance may be determined to have happened when groups of like objects are 

updated together. Consider Figures 9.8 and 9.9. Objects in a system are updated 

within a short period of time of each other as the action occurs. By examining the 

common characteristics of objects within a set period, a general statement may be 

able to be made about the action that occurred. 

 

Figure 9.8 Graph of updated objects where Y is the number of objects updated and X 
is the time of the update 
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Figure 9.9 Graph of updated objects where Y is the number of objects updated and X 
is the time of the update starting at Operating System install time 

When an object or group of objects is detected, information about what action these 

objects relate to may be found in at least two ways. The first method uses pre-

categorized generic locations or names to check detected objects. Consider the output 

of a search for all objects updated at “2008 03 07 Fri 11:35” (Appendix J). The 

majority of these objects’ locations are known to correlate to Internet activity. A 

match of a group of updated objects relating to the location “Temporary Internet 

Files” could denote the action “Internet-related Activity” at time “2008 03 07 Fri 

11:35”. 

For example, assume all objects in the directory ‘Temporary Internet Files’ are found 

to correlate to “Internet-related Activity”. In this case, when a search for only objects 

with that specific location is conducted and grouped by minute, 162 times are 

returned that correlate to “Internet-related Activity” (Appendix K). Since Internet 

browsing activity is usually a session over time, the groups of returned objects can be 

further grouped into sessions by grouping similar detected actions within a certain 

time-span. To illustrate, an arbitrary grouping of 1 hour between objects has been 

chosen as the grouping threshold. The result of such grouping is shown in Figure 

9.10. In this case, 31 sessions of “Internet-related activity” over time were identified, 

with some showing more object modification activity than others. 
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Figure 9.10 Grouping of detected Internet-related Activity objects by 1 hour sessions 
where the Y axis is the number of sessions and the X axis is the number of returned 

object times 

The second generic action information derivation method attempts to extract 

knowledge about the group of objects when no information about the action is known 

beforehand. In this case, an arbitrary 1-minute threshold is used to group objects. 

Using the same time as the previous example, “2008 03 07 Fri 11:35”, for every 

object that is returned, the text that is common to each object may provide some 

insight into what the objects relate to. One naive method involves returning the most 

common words in the group. In this case, the returned objects are known to correlate 

to Internet Explorer usage. The 10 most commonly occurring words (from file and 

path names) relating to the returned objects are examined below: 

cat mactime.out | grep "2008 03 07 Fri 11:35" | awk -F, '{print $NF}' 
| tr -cs "[:alnum:]" "\n"| tr "[:lower:]" "[:upper:]" | sort -S16M | 
uniq -c | sort -nr | cat -n | head -n 10 
 
     1  168 SETTINGS 
     2  102 C 
     3   90 YUANDONG 
     4   88 DOCUMENTS 
     5   88 AND 
     6   80 LOCAL 
     7   80 CONTENT 
     8   77 TEMPORARY 
     9   77 INTERNET 
    10   77 IE5 
 
Here it is shown that for this group of objects the most commonly occurring words 

reveal the user’s name, and a relation to “Internet” and “IE5”. This method was tested 

against known program executions on ‘Computer 1’ as described in section 10.1, with 

the results given in Appendix L. It is shown that out of 21 possible executions of 
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Mozilla Firefox, 4 execution times returned “Firefox” or “Mozilla” as one of the top 

10 most frequent words. Likewise, out of 6 possible executions of Internet Explorer, 2 

executions times returned “Internet” as one of the top 10 most frequent words. Using 

the 10 most frequent words was arbitrarily chosen only for testing purposes, and 

generally appeared to give enough context about actions for that time period without 

introducing un-related or extremely generic text. Also, it was observed that program 

or activity-related words were more frequent (using the 10-word threshold) at the 

most recent execution of the program, and less frequent further into the past. 

By presenting an investigator with a summary of related words, the investigator will 

have a general idea of the activities of the system at that particular time. Keyword 

filters to reduce common but possibly irrelevant words may help improve relevance 

of the returned topics. 

9.4.2 Weaknesses with Generic Matching 
There are two main issues when attempting to generically detect actions instances. 

First, if pre-defined lists of what objects in a specific location (or directory) “mean” 

are used, in most cases it is possible that not everything in that location is related to 

the assumed action. For example, a user could create and store files in the ‘Temporary 

Internet Files’ directory. Using genetic matching based on object location would not 

differentiate user-created objects from standard Internet-related activity. 

The second issue is with the fact that not enough information is known about what 

actions could have possibly happened. If any action could have happened, then 

categorization cannot be definite. In this case it is even impossible to use probabilistic 

methods to determine the action since no information about actions or objects is 

known beforehand. 

For these reasons, generic matching methods are at best an indicator of when some 

action took place. By looking at the similarities between grouped objects the nature of 

the action could be guessed, but not concretely determined automatically. Because of 

this, generic matching should be considered as a guide for an investigator, where an 

action occurring is a fact, but the true nature of that action is unknown and deeper 

meaning of the group of objects is to be determined by the expert. 
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9.5 Composite Action Instance Reconstruction 
The proposed action instance detection method can be used in a recursive fashion to 

determine more information about happened actions from the collection of detected 

actions. Actions as described thus far have been focused a single instance in time. 

However, computer usage normally consists of chains of actions that are temporally 

related to achieve a single purpose. For the reminder of this work, a single instance of 

an action will still be defined as an action, while a chain of actions temporally related 

to achieve a single purpose will be defined as a composite action. 

The collection of detected action instances can be thought of as low-level traces for 

which signatures of patterns of composite action instances can be created. Detected 

actions have either an associated single time approximation or approximated period of 

time. For example, Figure 9.11 shows detected action instances and their associated 

times in a timeline with 𝜏1 being the oldest and 𝜏4 being the most recent time value. 

 

Figure 9.11 Detected Actions (A1-4) ordered in time where 𝜏1 is the oldest detected 
time and 𝜏4 is the most recently detected time 

For example, a signature of a composite action such as “Browsing the Internet with 

Internet Explorer” can be created based on the detection of associated actions such as 

“Opening Internet Explorer”, “Navigating to website X”, “Closing Internet Explorer”. 

Depending on the composite action, the times must allow variability. For example, an 

Internet browsing session could last from minutes to hours. Composite actions may 

also have a precise order of actions in time. For example, a program must be opened 

before it can be closed. 

In terms of the proposed model, a composite action (ca) is defined as an ordered list 

of actions that are executed to achieve a specific objective. 

 𝑐𝑎 = (𝑎!,𝑎!,𝑎!,…𝑎!) 

 

A4 A3 A2 A1 

𝜏1 𝜏2 	  	  	  𝜏3 	  	  𝜏4 
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 A composite action instance (cai) is defined as the composite action executing within 

a time-span. 

𝑐𝑎𝑖 = (𝑐𝑎,𝛌𝜏)  

where 

• ca is the composite action 

• λ𝜏 is the time interval in which the composite action has taken place in the 

form of a double [tstart, tend], where 

o tstart is the composite action’s start time 

o tend is the composite action’s end time 

Composite action instances can be approximated based on the observation of related 

action instance approximations, where the composite action instance approximation 

(caia) is approximated to have executed in the interval between the oldest observed 

action instance approximation and the most recent action instance approximation in 

the set of action instance approximations relating to the composite action. 

Detected action instance approximations are treated as an object that can be observed 

in the system. Based on this, signatures of composite actions may be defined as: 

𝑆!" = {  𝑇𝑖, 𝑐𝑚} 

where 

• Ti is the set of all instance approximations associated with the composite 

action instance  

• cm is the update consistency checking function specific to the category of 

action instance execution patterns that tests some property of 𝑖𝑎 ∈ 𝐼𝐴 where 

𝑖𝑎 ∈ 𝑇𝑖 

Signatures of composite actions may be created where action instance approximations 

are in the set Ti, and the consistency function (cm) is defined by modeling the pattern 

of action instance approximation times in terms of the execution of the composite 

action instance. 

Two pieces of information can be derived when using a signature of a composite 

action over a collection of approximated actions. First, detected action instances can 

be grouped to determine which composite action instance an action belongs to. For 
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example, in Figure 9.11 assume action A1 was “Open Internet Explorer”, A2 was 

action “Navigating to website X”, A3 was action “Open Internet Explorer”, and A4 

was action “Navigating to website Y”. Action A2 logically cannot belong to action 

A3, and therefore must be related to action A1. Much like the consistency checking 

method discussed in section 9.3.1, action A4 could be related to either A1 or A3. 

Next, additional action instances may be inferred or confirmed by using composite 

action signatures. Again, consider Figure 9.11. Assume A1 was action “Windows 

Startup”, A2 was action “Open Instant Messenger”, A3 was action “Close Internet 

Explorer”, and A4 was action “Windows Shutdown”. Two composite action 

signatures exist, “Use Instant Messenger” and “Use Internet Explorer”. The 

composite action “Use Instant Messenger” consists of two actions, “Open Instant 

Messenger” (Open IM) and “Close Instant Messenger” (Close IM). The composite 

action “Use Internet Explorer” also consists of two actions, “Open Internet Explorer” 

(Open IE) and “Close Internet Explorer” (Close IE). The application of these 

composite action signatures is shown in Figure 9.12. 

 
Figure 9.12 Action instances detected using composite action signatures and time 

bounding between already detected action instance approximations 
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Given the ensemble of detected action instances, composite action signatures can 

allow the detection of action instances that must have happened for the already 

detected actions to exist. However, the exact time of the action may not be able to be 

determined. For example, in Figure 9.12 the action Close IE was detected, but no 

corresponding open action was detected. The composite action signature Use Internet 

Explorer requires that the action Open IE must have happened before the action Close 

IE. Because Close IE was detected at time 𝜏3, Open IE must have happened sometime 

before time 𝜏3, but the exact time cannot be determined. 

While just knowing that a particular action must have happened may be useful in 

some cases, usually the time in which the action has occurred is also important. Using 

event time bounding techniques as described by Gladyshev and Patel (2005) and Zhu 

(2011), a time range for newly inferred actions may be determined. In Figure 9.12 it is 

known that the event Close IE must have happened at time 𝜏3, and therefore the 

action Open IE must have happened any time before 𝜏3. However, utilizing other 

known information, the time in which Open IE must have occurred can be restricted. 

In this case the action Windows Startup is known to have occurred at time 𝜏1. Since 

an open action cannot have occurred before an OS startup action, the time-span in 

which Open IE must have occurred can be reduced from infinity before 𝜏3 to a time-

span between 𝜏1 and 𝜏3. Like previously discussed, when attempting to determine the 

association of a trace to a particular action, more context can be found that allows for 

the inference of information that would otherwise be unavailable. In this case, the 

detection of the time of the OS startup action gives context to the state of the system. 

Some actions such as system startup or shutdown are system-wide limiters, and such 

actions can be used to limit the time-span in which an action could have occurred. 

Using signatures of composite actions with time-bounding methods allows previously 

undetected action instances to be approximated between time-span limiters. 

9.6 Verification of Human Inference 
The proposed hypothesis reduction method could be used to verify the human 

inference process in digital forensic examinations. Surveyed investigators admitted 

that verification of the investigation process was not normally taking place, and if 

verification was taking place it was normally a peer review of the created report 

(James and Gladyshev 2010). By utilizing the hypothesis reduction method, possible 
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actions could be detected before a manual examination by a human was conducted. 

Further, signature-based hypothesis reduction methods may also help in real-time and 

post analysis inference verification phases. 

One application could be implemented during a real-time analysis. An investigator 

may observe a set of objects, and infer what the state of the collection of objects mean 

in relation to the suspect’s actions. The investigator may then submit his or her 

hypothesis. Signature-based methods could be used to determine the feasibility of the 

hypothesis, and present alternatives that the investigator may then want to investigate 

further. 

Such methods may also be applied after an analysis has taken place. Oftentimes a 

report is normally created concerning the thought processes of the investigator. This 

report is normally checked by a supervisor, but cannot be thoroughly scrutinized 

without another thorough, time-consuming investigation of the same suspect media. 

Instead, each inference the investigator made that is encoded in the report could be 

tested using the proposed signature-based hypothesis reduction method to quickly 

determine whether hypothesis are supported by the given evidence, or whether such 

hypotheses don’t hold, and should be investigated further. 

One limitation is that the proposed hypothesis reduction method, much like a human 

investigator, cannot always be perfect in systems with so much uncertainty. Also, the 

method is attempting to automate higher-level thought processes, where the 

interpretation of what objects mean is being examined. Because of this, error rates 

normally used for traditional digital forensic tools are not adequate. The investigation 

accuracy measurement method proposed in Chapter 5 is offered to provide a way to 

objectively compare the classification of the meaning of objects between tools and 

investigators. 

9.7 Summary 
This chapter began by discussing the inferences of single and multiple occurrences of 

a given action instance based on the previously discussed signature matching 

methods. Consistency between object updates as well as higher-level consistency 

between actions was discussed. A probabilistic method for associating traces to 

actions when uncertainty exists was given, and the issues with such a method were 

discussed. Next, generic matching of action instances based on no prior information 
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was then briefly described, with case examples explored and weaknesses given. After, 

high-level event reconstruction using the proposed signature-matching model was 

discussed that enables more actions to be inferred based on the presence of previously 

inferred action instances. Finally, the use of the proposed signature-based hypothesis 

reduction methods for human inference verification in digital forensic investigations 

was discussed.



 

 

Chapter 10 

Evaluation 
This chapter gives an evaluation of the proposed signature-based action instance 

detection method. First, the case scenario is given that forms the base case data for the 

remainder of this chapter.  Next, an analysis of the extraction and categorization of 

traces and update thresholds needed to create signatures of action instances is given. 

The results of the signature-based action instance detection method are compared to 

similar work involving action “footprint” generation and matching via machine 

learning techniques conducted by Khan (2008). Weaknesses of the proposed 

signature-based action instance detection method is then examined and discussed. 

10.1 Case Study 
The following case study has been designed to evaluate 1) whether generalized 

signatures of action instances can be derived by monitoring a similar system and 2) 

whether derived signatures, using the proposed action instance detection methods, are 

able to detect and differentiate past action instances on random real systems given 

only the most recent state of the suspect system. The goal is to determine whether 

signature-based methods are effective at automatically reconstructing past action 

instances during a post-mortem digital forensic analysis. Effectiveness in this case is 

defined as detecting past action instances with no false positives. In other words, only 

action instances that have occurred will be detected. As discussed, meta-data is 

continually overwritten. As such, observing only the final state of the system may 

give no indication of action instances before the most recently occurring. Because of 

this, false negatives – not detecting action instances that have occurred – are expected. 

In this case study, Core and Supporting signatures will be derived for specific actions. 

Objects in these signatures will be generalized using Regular expressions as 

discussed. Action update thresholds will be determined through experimentation, and 

the consistency checking functions as previously defined will be used for Core and 

Supporting traces. Test ‘suspect’ systems will be monitored using the built-in 

Windows event logging, with process executions and terminations logged over time. 

While monitoring is taking place, the owners of the test systems will use the systems 

as they normally would during their daily computer usage. After the monitoring 

period, meta-data will be collected from each system using The SleuthKit’s “fls” 
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program for Windows, and the generated process monitoring logs will also be 

collected. A collection of bash scripts named ‘Forensic Investigation of Timelines 

using Signatures’ (FITS) (Appendix M) has been created that accepts as inputs the 

dumped meta-data of a suspect system and signatures of actions. FITS outputs 

detected action instances and their associated time information. The action instance 

and time output will be compared to the collected process logs. Effectiveness will be 

evaluated based on the ability to detect action instances on differently configured 

systems, as well as the algorithm’s ability to differentiate between action instances. 

10.1.1 Testing Scenario 
The test case consists of two computers running Windows XP. One is a standard 

install of the English version of Windows XP, and the other was a standard install of 

the Chinese version of Windows XP. Internet Explorer 8 (IE8) and Firefox 3 (FF3) 

were installed on both systems. Each computer was used daily for entertainment, 

work and study tasks. Both users identified that they used Firefox as their primary 

browser. To accurately determine when IE8 and FF3 have been opened and closed, a 

Windows security auditing policy was implemented on both computers to monitor 

process creation and executable access. By enabling Windows security auditing, 

detailed information about processes, such as the process name and time of starting 

and stopping the process, could be collected. Each computer was monitored for a 

number of days, after which the Windows security event log was exported and the 

computer’s file system meta-data was collected using tools from The Sleuth Kit 

(Carrier 2005) version 3.2.2. 

From the collected Windows event logs it was observed that on ‘Computer 1’ 12 

instances of opening Firefox 3 from the 19th to the 24th were identified (Table 10.1), 

and 6 instances of opening IE8 were identified (Table 10.2). 

 

 

 

 

 



CHAPTER 10. EVALUATION 

 

157 

Table 10.1 Computer 1 Windows event log of “Firefox 3 Open and Close” actions 
where each session is grouped by process ID 

Time User Action Process ID Process 

07/19/2011 22:04:43 Close 5096 firefox.exe 

07/19/2011 23:22:51 Open 4192 firefox.exe 

07/19/2011 23:41:58 Open 472 firefox.exe 

07/19/2011 23:41:59 Close 472 firefox.exe 

07/20/2011 01:21:42 Close 4192 firefox.exe 

07/20/2011 11:55:09 Open 4368 firefox.exe 

07/20/2011 13:49:57 Close 4368 firefox.exe 

07/20/2011 15:10:33 Open 4928 firefox.exe 

07/20/2011 16:19:40 Open 6048 firefox.exe 

07/20/2011 16:19:41 Close 6048 firefox.exe 

07/20/2011 20:23:52 Close 4928 firefox.exe 

07/20/2011 22:07:06 Open 6096 firefox.exe 

07/21/2011 01:24:09 Close 6096 firefox.exe 

07/21/2011 11:29:01 Open 4112 firefox.exe 

07/21/2011 11:31:39 Close 4112 firefox.exe 

07/21/2011 19:29:30 Open 4076 firefox.exe 

07/22/2011 02:57:05 Close 4076 firefox.exe 

07/22/2011 11:35:29 Open 1632 firefox.exe 

07/23/2011 03:07:32 Close 1632 firefox.exe 

07/23/2011 11:36:13 Open 5972 firefox.exe 

07/24/2011 02:26:40 Close 5972 firefox.exe 

07/24/2011 13:23:58 Open 4284 firefox.exe 

07/24/2011 15:02:30 Open 5408 firefox.exe 

07/24/2011 15:02:31 Close 5408 firefox.exe 
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Table 10.2 Computer 1 Windows event log of “Internet Explorer 8 Open and Close” 
actions where each session is grouped by process ID 

Time User Action Process ID Process 

07/20/2011 19:15:48 Open 5396 iexplore.exe 

07/20/2011 19:15:50 Open 4220 iexplore.exe 

07/20/2011 19:24:03 Close 4220 iexplore.exe 

07/20/2011 19:24:03 Close 5396 iexplore.exe 

07/21/2011 16:08:09 Open 5524 iexplore.exe 

07/21/2011 16:08:10 Open 5308 iexplore.exe 

07/21/2011 18:34:38 Close 5308 iexplore.exe 

07/21/2011 18:34:38 Close 5524 iexplore.exe 

07/23/2011 14:56:45 Open 184 iexplore.exe 

07/23/2011 14:56:46 Open 452 iexplore.exe 

07/23/2011 19:20:09 Close 184 iexplore.exe 

07/23/2011 19:20:09 Close 452 iexplore.exe 

 

From the collected Windows event logs it was observed that on ‘Computer 2’ 14 

instances of opening FF3 from the 13th to the 17th were identified (Table 10.3), and 

two instances of opening IE8 were identified (Table 10.4). 

Table 10.3 Computer 2 Windows event log of “Firefox 3 Open and Close” actions 
where each session is grouped by process ID 

Time User Action Process ID Process 

07/13/2011 11:51:45 Open 1380 firefox.exe 

07/13/2011 12:14:23 Close 1380 firefox.exe 

07/13/2011 12:14:28 Open 5900 firefox.exe 

07/13/2011 21:48:27 Close 5900 firefox.exe 

07/13/2011 21:51:45 Open 2196 firefox.exe 

07/13/2011 21:54:12 Close 2196 firefox.exe 

07/13/2011 23:33:29 Open 1276 firefox.exe 
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07/13/2011 23:33:47 Close 1276 firefox.exe 

07/13/2011 23:33:52 Open 4032 firefox.exe 

07/13/2011 23:35:09 Close 4032 firefox.exe 

07/13/2011 23:35:16 Open 1404 firefox.exe 

07/14/2011 00:35:54 Close 1404 firefox.exe 

07/14/2011 01:38:42 Open 3820 firefox.exe 

07/14/2011 02:13:46 Close 3820 firefox.exe 

07/14/2011 23:50:48 Open 4028 firefox.exe 

07/15/2011 01:33:19 Close 4028 firefox.exe 

07/15/2011 22:36:31 Open 4920 firefox.exe  

07/15/2011 23:15:23 Close 4920 firefox.exe 

07/16/2011 18:15:34 Open 1976 firefox.exe 

07/16/2011 23:34:18 Close 1976 firefox.exe 

07/17/2011 00:46:14 Open 3548 firefox.exe 

07/17/2011 03:16:36 Close 3548 firefox.exe 

07/17/2011 15:23:01 Open 4460 firefox.exe 

07/17/2011 16:04:10 Close 4460 firefox.exe 

07/17/2011 16:16:52 Open 4616 firefox.exe 

07/17/2011 18:20:06 Close 4616 firefox.exe 

07/17/2011 20:24:14 Open 2004 firefox.exe 

07/17/2011 20:26:38 Close 2004 firefox.exe 

 

Table 10.4 Computer 2 Windows event log of “Internet Explorer 8 Open and Close” 
actions where each session is grouped by process ID 

Time User Action Process ID Process 

07/17/2011 15:15:05 Open 4832 iexplore.exe 

07/17/2011 15:15:06 Open 5472 iexplore.exe 

07/17/2011 15:22:37 Close 5472 iexplore.exe 

07/17/2011 15:22:43 Close 4832 iexplore.exe 
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The logged activity from both systems will be used as the baseline to compare the 

effectiveness of the proposed signature-matching method. 

10.2 Action Signature Derivation and Categorization 
An action signature has been defined as the unique ensemble of traces that are 

ultimately caused by a specific action, which are related by a specific time-span and 

consistency function. The unique ensemble of traces in the context of this section will 

be the collection of time stamps modified by the occurrence of an action, and 

specifically time stamps related to files and Windows Registry keys. The signature 

derivation method described in Chapter 8 will be used to determine specific traces and 

their update categories relevant to a particular action. Using this method, objects 

related to an action instance can be determined, which can then be monitored for 

classification and update threshold determination purposes. 

10.2.1 Action Signature Derivation 
Microsoft Process Monitor was used to record all system calls executed during 

instances of the actions “Open IE8” and “Open FF3” on Windows XP service pack 3. 

Windows XP was chosen since, as of this writing, it is still the most frequently 

encountered operating system of surveyed law enforcement (James 2010; James 

2011). The initial tests recorded only activities associated with the respective 

executed processes. Each action was executed 10 times via a macro utility that can 

repeatedly simulate mouse and keyboard interaction. Considering that not all traces 

will be updated on every instance of the action, the results of the 10 executions were 

combined, and duplicate entries were removed. This has potential to increase noise, or 

objects associated with other background activities, but all noise will be filtered in the 

trace categorization process. The results are lists of objects that are altered when the 

respective actions occur. This process produced 51537 potential traces for Internet 

Explorer 8, and 6416 potential traces for Firefox 3. 

10.2.1.1 Trace Categorization and Object Update Threshold Approximation 
Next, to determine trace update behavior for classification purposes, time stamps for 

each identified object were collected. Each action was again executed 10 times. Other 

non-related actions were executed at least 2 minutes after the action of interest, 

including system shutdown and startup actions to introduce noise. After each 

execution of the action and noise-producing session, time stamps of all previously 
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identified action-associated objects were collected with the previously mentioned 

‘sigtest.pl’, given in Appendix F. 

For each tested action, the results of each instance of the action were analyzed to 

determine trace category association. This process consisted of comparing the trace 

time with the known execution time. For testing, an initial object update threshold of 

120 seconds was assigned based on the observation that past action instance update 

thresholds were normally within 60 seconds. A threshold of 120 seconds allows for 

initial exploratory analysis that will be made more specific in later examination. 

If the trace time was within the object update range, then it was marked as Core. If the 

trace was before the action execution time – outside of the object update range – then 

the trace was marked as Supporting. If the trace was after the action execution time – 

outside of the object update range – then it was marked as Shared based on the fact 

that, to be consistent with Core or Supporting categories, the trace cannot be before 

the detected Core trace times, and so must be updated by some other process. 

Categorization considered the known action instance time for each run, and analyzed 

the update behavior of traces across each run. In this case, traces were allowed to be 

downgraded from Core to Supporting to Shared, and could not be upgraded once 

flagged at a lower level. 

A second level of refinement was required to calculate a more accurate object update 

threshold, and verify traces were correctly categorized. The process was ran another 

10 times, each time examining the update times compared with the known execution 

time. For both actions, the object update threshold was lower than the initial 120 

seconds threshold. However, traces were not usually re-categorized because of the 

lower threshold – the time between action instances was sufficient to differentiate 

between executions, even with a longer threshold. Using the derived associated trace 

list, the object update threshold derivation process described in section 8.3 must be 

sampled on many different machines to attempt to get a representative update 

threshold. The update threshold for IE8 was found to be 61 seconds, and the update 

threshold for FF3 was found to be 50 seconds. 

The resulting Core and Supporting objects and time stamps of interest are shown in 

Table 10.5 and Table 10.6 for Firefox and Internet explorer, respectively. Objects are 
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defined as previously described Regular Expressions to support portability to other 

systems. 

Table 10.5 Firefox 3 objects, update categories and corresponding time stamp of 
interest represented as Regular Expressions 

Type Timestamp Name Objects associated with “FF3 Open and 
Close” 

Core Modified T1 .*/Firefox/Profiles/.*default/urlclassifierkey.\.txt 

Core Modified T2 .*/Prefetch/Firefox\.EXE-.*\.pf 

Support Created T3 .*/Prefetch/Firefox\.EXE-.*\.pf 

Support Created T4 .*/Firefox/Profiles/.*default/cookies.sqlite-journal 

Support Created T5 .*/Firefox/Profiles/.*\default/urlclassifierkey.\.txt 

Support Created T6 .*/Firefox/Profiles/.*default/startupCache$ 

Support Created T7 .*/Firefox/Profiles/.*default/pluginreg.dat 

 

Table 10.6 Internet Explorer 8 objects, update categories and corresponding time 
stamp of interest represented as Regular Expressions 

Type Timestamp Name Objects associated with “IE8 Open and 
Close” 

Core Modified T8 .*/Prefetch/IEXPLORE\.EXE-.*\.pf 

Support Created T9 .*/Prefetch/IEXPLORE\.EXE-.*\.pf 

Support Created T10 .*/Cookies/.*@ATDMT\[[0-9]\]\.TXT 

Support Created T11 .*/Cookies/.*@BING\[[0-9]\]\.TXT 

Support Created T12 .*/Cookies/.*@live\[[0-9]\]\.TXT 

 

With knowledge of the object, trace of interest, object update threshold and 

previously given category consistency checking functions, signatures for the actions 

“Open IE8” and “Open FF3” may be created. 

10.3 Core and Supporting Action Instance Signature Matching 
This section refers to the testing scenario given in section 10.1. The meta-data from 

Computer 1 was scanned using the previously defined signature for “Open FF3”. The 

identified objects and associated time stamps are shown in Table 10.7. 
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Table 10.7 Firefox 3 objects and associated time stamps identified using signature 
detection on Computer 1 

Time Name Returned Object 

07/24/2011 
13:24:14 

T1 C:/Documents and Settings/User1/Application 
Data/Mozilla/Firefox/Profiles/94370b5u.default/urlclassifierkey3.t
xt 

07/24/2011 
15:02:31 

T2 C:/WINDOWS/Prefetch/FIREFOX.EXE-28641590.pf 

12/26/2010 
04:26:24 

T3 C:/WINDOWS/Prefetch/FIREFOX.EXE-28641590.pf 

07/24/2011 
13:24:10 

T4 C:/Documents and Settings/User1/Application 
Data/Mozilla/Firefox/Profiles/94370b5u.default/cookies.sqlite-
journal 

01/05/2011 
23:15:34 

T5 C:/Documents and Settings/User1/Application 
Data/Mozilla/Firefox/Profiles/94370b5u.default/urlclassifierkey3.t
xt 

N/A T6 .*/Firefox/Profiles/.*default/startupCache$ 

12/26/2010 
03:04:55 

T7 C:/Documents and Settings/User1/Application 
Data/Mozilla/Firefox/Profiles/94370b5u.default/pluginreg.dat 

 

All Core artifacts were discovered, however, T1 had a time stamp that was different 

than T2. This unexpected behavior can be explained by looking at the Open and Close 

times from the Windows Event log for Computer 1 (Table 10.1). The Firefox open 

event with the process ID 4284 occurred at 13:23, and was never followed by a 

process close event. While process 4284 was still open, another instance of Firefox 

was started, process 5480, at 15:02. If process 4284 had locked the object in question, 

then the time stamp may not be updated upon another instance of the action. 

However, T2 was not locked by the first action instance, and was updated. Since both 

objects must be updated when the action instance happens, this must mean that two 

instances of the same action must be running in parallel, otherwise both objects would 

be updated. Consistency checking, however, would only detect an inconsistency in 

timestamps, and flag such an inconsistency for further manual investigation unless the 

particular case was built into the consistency checking function. 

Figure 10.1 shows the signature-detected times of the action instance “Open FF3”. In 

this figure, action instances up to a year prior to the test were detected using 

signature-based methods, but not all of the most recent executions were detected. 
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Figure 10.2 shows the most recent detected executions compared to the Windows 

Event Log entries. 

 

Figure 10.1 Full times of the “Open FF3” action on Computer 1, where signature-
detected times are shown in blue diamonds compared to the Windows Event Log times 

shown in red squares 

 

Figure 10.2 Most recent times of the “Open FF3” action on Computer 1, where 
signature-detected times are shown in blue diamonds compared to the Windows Event 

Log times shown in red squares 

Next, the meta-data from Computer 1 was scanned using the previously defined 

signature for “Open IE8”. The identified artifacts and associated time stamps are 

shown in Table 10.8. 
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Table 10.8 Internet Explorer 8 objects and associated time stamps identified using 
signature detection on Computer 1 

Time Name Found Artifact 

07/23/2011 
14:56:53 

T8 C:/WINDOWS/Prefetch/IEXPLORE.EXE-27122324.pf 

07/19/2011 
00:57:22 

T9 C:/WINDOWS/Prefetch/IEXPLORE.EXE-27122324.pf 

06/14/2011 
10:47:26 

T10 C:/Documents and Settings/User1/Cookies/user1@atdmt[2].txt 

01/11/2011 
19:40:26 

T11 C:/Documents and Settings/User1/Cookies/user1@bing[2].txt 

06/14/2011 
10:47:26 

T12 C:/Documents and Settings/User1/Cookies/user1@live[1].txt 

 

All Core artifacts were detected, identifying the most recent execution of IE8 as 

happening at approximately 14:56 on 07/23/2011. All other associated artifacts had 

time stamps before this time. Figure 10.3 shows a graph of all the signature-detected 

times of the event “Open IE8”. Again, in this figure action instances up to 6 months 

prior to the test were detected using signature-based methods, but not all of the most 

recent executions were detected. Figure 10.4 shows the most recent detected 

executions of IE8 compared to the Windows Event Log entries. 

 

Figure 10.3 Full times of the “Open IE8” action on Computer 1, where signature-
detected times are shown in blue diamonds compared to the Windows Event Log times 

shown in red squares 
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Figure 10.4 Most recent times of the “Open IE8” action on Computer 1, where 
signature-detected times are shown in blue diamonds compared to the Windows Event 

Log times shown in red squares 

Next, the meta-data from Computer 2 was scanned using the previously defined 

signature for opening FF3. The identified objects and associated time stamps are 

shown in Table 10.9. 

Table 10.9 Firefox 3 objects and associated time stamps identified using signature 
detection on Computer 2 

Time T Found Artifact 

07/17/2011 
20:24:26 

T1 C:/Documents and Settings/user/Application 
Data/Mozilla/Firefox/Profiles/c2yzki95.default/urlclassifierkey3.txt 

07/17/2011 
20:24:18 

T2 C:/WINDOWS/Prefetch/FIREFOX.EXE-28641590.pf 

05/21/2010 
16:15:23 

T3 C:/WINDOWS/Prefetch/FIREFOX.EXE-28641590.pf 

05/14/2010 
16:44:22 

T4 C:/Documents and Settings/user/Application 
Data/Mozilla/Firefox/Profiles/c2yzki95.default/cookies.sqlite-journal 
(deleted) 

10/23/2010 
11:26:02 

T4 C:/Documents and Settings/user/Application 
Data/Mozilla/Firefox/Profiles/c2yzki95.default/cookies.sqlite-journal 
(deleted) 

04/13/2011 
00:33:49 

T5 C:/Documents and Settings/user/Application 
Data/Mozilla/Firefox/Profiles/c2yzki95.default/urlclassifierkey3.txt 

07/17/2011 
15:23:05 

T6 C:/Documents and Settings/user/Local Settings/Application 
Data/Mozilla/Firefox/Profiles/c2yzki95.default/startupCache 

07/17/2011 
00:46:36 

T7 C:/Documents and Settings/user/Application 
Data/Mozilla/Firefox/Profiles/c2yzki95.default/pluginreg.dat 
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All Core artifacts were detected, identifying the most recent execution of FF3 as 

approximately 20:24 on 07/17/2011. All other associated objects had time stamps 

before this time. One action of note relates to object T4. In this case multiple instances 

of the object were created and deleted, and the meta-data information could be 

recovered for two of those instances. The update rules for the artifact in question still 

hold, even if the object is deleted. For this reason, multiple detected instances of T4, 

or any other artifact, may contribute time stamp information per usual. This allows for 

the possibility of much more information to be derived about an action by utilizing all 

available meta-data, similar to methods used by Farmer and Venema (2005) who used 

deleted file information for malware analysis. 

Figure 10.5 shows a graph of the signature-detected times of the event “Open FF3”. 

In this figure, action instances up to one year prior to the test were detected using 

signature-based methods, but not all of the most recent executions were detected. 

Figure 10.6 shows the most recent detected executions compared to the Windows 

Event Log entries. 

 

Figure 10.5 Full times of the “Open FF” action on Computer 2, where signature-
detected times are shown in diamonds compared to the Windows Event Log times 

shown in squares 
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Figure 10.6 Most recent times of the “Open FF3” action on Computer 2, where 
signature-detected times are shown in diamonds compared to the Windows Event Log 

times shown in squares 

Next, the meta-data from Computer 2 was scanned using the previously defined 

signature for opening IE8. The identified objects and associated time stamps are 

shown in Table 10.10. 

Table 10.10 Internet Explorer 8 objects and associated time stamps identified using 
signature detection on Computer 2 

Time T Found Artifact 

07/17/2011 
15:15:13 

T9 C:/WINDOWS/Prefetch/IEXPLORE.EXE-27122324.pf 

07/17/2011 
15:15:09 

T10 C:/WINDOWS/Prefetch/IEXPLORE.EXE-27122324.pf 

03/10/2011 
15:01:01 

T11 C:/Documents and Settings/User2/Cookies/user2@atdmt[1].txt 

03/10/2011 
15:38:37 

T12 C:/Documents and Settings/User2/Cookies/user2@bing[2].txt 

03/10/2011 
15:38:37 

T13 C:/Documents and Settings/User2/Cookies/user2@live[2].txt 

 

All Core objects were detected, setting the most recent execution of IE8 at 

approximately 15:15 on 07/17/2011. All other associated objects had time stamps 

before this time. Figure 10.7 shows a graph of the signature-detected times of the 

event “Open IE8”. In this figure, action instances up to four months prior to the test 
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were detected using signature-based methods, but not all of the most recent 

executions were detected. Figure 10.8 shows the most recent detected executions 

compared to the Windows Event Log entries. 

 

Figure 10.7 Full times of the “Open IE8” action on Computer 2, where signature-
detected times are shown in diamonds compared to the Windows Event Log times 

shown in squares 

 

Figure 10.8 Most recent times of the “Open IE8” action on Computer 2, where 
signature-detected times are shown in diamonds compared to the Windows Event Log 

times shown in squares 

In each case there were no discernable false positives, and the most recent action 

instance was always detected. There were a large number of false negatives, 

especially going further back in time, which was expected as evidence of past action 

instances are overwritten. Further analysis is given in section 10.5. 
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10.4 Signature-based Detection Error Rate and Analysis 
In order to determine the rate of error for the described signature-matching method, 

the true positives, false positives and false negatives for each action that was detected 

by Core and Supporting signatures are given in Table 10.11. A true positive is the 

detection of an action instance that actually happened according to the extracted 

Windows event logs. A false positive is detection of an action instance when an 

instance did not happen according to the Windows event logs. A false negative is not 

detecting an action instance when the action instance actually happened according the 

Windows event logs. 

Table 10.11 Matching true positive, false positive and false negative rates for each 
tested Core and Supporting signature-detected action instance 

Computer Action True Positive False Positive False Negative 

Computer 1 Open FF3 2 0 10 

Computer 1 Open IE8 1 0 2 

Computer 2 Open FF3 3 0 11 

Computer 2 Open IE8 1 0 0 

Total  7 0 23 

 

When comparing the signature based detection method to the results of the collected 

Windows Event Logs, the most recent execution of the action was always accurately 

found. Past executions of actions were found with no determinable false positives. 

False negatives, however, were common. This is because observable trace evidence 

degrades over time as the system is used, and may no longer be available in a post-

mortem analysis.  

The results show that using signature based detection methods allows an investigator 

to easily gain knowledge of at least the most recently executed actions, sometimes 

detecting actions that happened months prior to the examination; however, just 

because an action was not detected does not mean it did not happen. 

Two unexpected happenings were found in the given cases. First, when an action 

occurs, some artifacts that would normally update (Core) may be locked by the first 
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instance of the action. If a second instance of the same action occurs while the artifact 

is locked, the artifact may not be updated. By trusting only the single artifact, 

incorrect inferences about the most recent execution time of the action could be made. 

This property could also be beneficial if it is known that more than one object must be 

updated. In that case, two different time stamps will exist that could provide more 

information about, and therefore consistency checking of, the action. Second, multiple 

deleted instances of a single object were found. In this case, each instance of the 

object will have the same update characteristics as a non-deleted artifact, and would 

provide more overall time stamp information. 

10.4.1 Comparison of Results to Other Methods 
For a comparison of the given signature matching method, the action instance 

detection method proposed by Khan (2008) will be studied. Khan proposed machine-

learning methods – specifically Bayesian networks – to learn an application’s 

“footprint”. A footprint is essentially the pattern of alteration across objects, normally 

files, that denotes when an application is executed. This method is effective at 

automatically learning the footprint of an application to determine the last time an 

application has been run; however, Khan found that “it is very strenuous and 

laborious to find shadowed application runs”. The learned footprint is somewhat 

analogous to the Core signature proposed in this work with the exception that even 

Khan’s Core signature is probabilistic. 

Khan stated that “[t]he matter of obtaining the application program's accurate 

footprint is complicated by the fact that much of the application footprint is modified 

each time the application runs”. Using the Khan’s method, it is difficult to determine 

instances of a program’s execution beyond the most recent. “Evidence of these runs 

are required to be derived from events within the audit log files, history files and 

temporary files found either within the file system entries or by searching for their 

traces in the free blocks of storage media.” However, when information in these data 

sources is incomplete, Khan believes “it is more appropriate to attach a likelihood 

measure to the assertion that an application was running at that particular time”. 

The signature-based method proposed in this work did not yet consider action 

instance inference based on the state of the content of objects. Even without, previous 

executions of the action instance may be detected by utilizing categorization of traces 
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without assigning likelihood measures. With categorization of traces, patterns of 

relations between traces may be modeled and used to include or exclude hypotheses 

about an action instance. Khan’s method looked only at the fact that traces were 

updated by the execution of applications, and not the behavior pattern of the update. 

This is the limiting factor that makes it difficult to infer action instances that occurred 

before the most recent execution. Also, attempting to learn signatures without 

considering the update behavior of the associated traces can introduce more 

uncertainty and error. By utilizing trace update behavior analysis, the method 

described in this work is able to determine whether some past action instance have 

occurred without using likelihood measures. However, after consistency checking, 

when attempting to make statements about which action was likely given two or more 

possible hypotheses, probabilistic methods may be used while considering their 

limitations. 

One advantage of Khan’s method lies in the fact that “footprints” are automatically 

learned. By combining the trace categorization given in this work with machine 

learning methods, performance of learned signatures may increase while reducing the 

complexity of highly manual signature generation. 

10.5 Weaknesses of Signature-Based Action Instance Detection 
There are four main weaknesses to the proposed signature-based action instance 

detection method. 

1) Lack of Knowledge 
The greatest weakness with this method is the same weakness in all signature-based 

detection methods. Not all possible actions can be known, and unknown actions will 

not be considered. This lack of complete knowledge is especially relevant in the case 

of action instance signature generation. If not all possible actions are known, then it is 

impossible definitely determine a trace’s category. 

The answer to this weakness comes from the investigator. Human knowledge is also 

incomplete, yet human investigators are able to state that actions in a system must 

have happened based on their knowledge of how the system works. Human 

investigators also update their knowledge based on new experiences. Signature-based 

action instance detection methods must be able to be updated when new information 
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that leads to changing a trace’s category is found. Even if action signatures are being 

updated, it is still not possible to account for every piece of custom-made software. 

For this reason, this method should be used as a pre-analysis inference guide for the 

human investigator or for post-examination human inference verification rather than 

for completely automated investigations. 

By using the proposed action hypothesis reduction methods, action instances can be 

derived. However, multiple action hypotheses may be associated with a single trace, 

and both may be consistent with trace update patterns. In this case, integrating 

probabilistic approaches may help reduce signature-based weaknesses while still 

maintaining a high level of accuracy. 

2) Accurate Signature Derivation 
In order to explore trace update behavior and associated categories, manual signature 

derivation methods were used. This causes two issues: First, object meta-data update 

patterns can be easily observed, but object content update patterns are much more 

difficult and time consuming. Object content updates, such as log file entries, can 

provide much more information when attempting to determine the execution and 

consistency of actions. 

 Next, signature derivation must be automated for the proposed method to be 

practical. The complexity of the signature generation, and the varying traces 

generated between different versions of the same software will make maintenance 

prohibitive. It is because of this that both specific and general signature types need to 

be explored. With multiple signature types, general signatures may allow for the 

detection of actions at a high level, and specific signatures will be used for actions 

that are specifically important to an investigator. 

Alternatively, now that trace and signature categorization has been defined in this 

work, machine-learning techniques to determine each category type may potentially 

be more effectively tuned for learning signatures of actions by focusing learning 

algorithms on specifically on trace update consistency checking functions. 

3) Object Update Threshold Derivation 
The weakness when attempting to accurately determine the object update threshold 

for a particular action instance is that the update threshold is completely dependent on 
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unknown variables, such as the speed of the computer and the processing load on the 

computer when the action instance takes place. Even with a wide sample, it is 

possible that a very slow computer could produce updates outside of the threshold for 

the same action instance. Alternatively, if the threshold is too large, faster computers 

could have multiple action instances within the threshold, making it difficult to 

differentiate instances. 

Possible solutions to this weakness include creating a specific computer update 

threshold derived from an analysis of the time stamps on the suspect machine being 

analyzed and modeled against previously known object update threshold times. 

4) Use of Anti-forensics Techniques 
The proposed signature-based detection of actions is somewhat vulnerable to anti-

forensics techniques in at least two ways. First, signature-based methods must have 

objects to observe. If all objects associated with the action instance are removed, the 

signatures will not be able to detect an instance of the action. However, if any objects 

related to the action instance remain, then the instance may possibly be detected. 

The second vulnerability involves altering time stamp information. While consistency 

checking is built into the action instance signature, it may be possible to alter time 

stamp information in a way that is consistent with the signature consistency checking 

functions. An intentional altering of time stamp information could result in an action 

instance being detected at a time when the instance did not occur. The altering of time 

stamps will be detected with Core signatures that have more than one associated 

object. However, for Supporting, altering the object’s time stamp value to anything 

before the last execution (Core) time will be considered consistent and presented as 

the time of an action instance. 

10.6 Summary 
This chapter gave an evaluation of the proposed signature-based action instance 

detection method. First, the case scenario was given that was the base case data for 

the remainder of the chapter. Next, an analysis of the extraction and categorization of 

traces and update thresholds needed to create signatures of action instances was given. 

After, a case study was given to demonstrate the practicality of signature-based action 

instance detection. The results of the signature-based action instance detection method 
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was measured, and compared to similar work involving action “footprint” generation 

and matching via machine learning techniques conducted by Khan (2008). Weakness 

of the proposed signature-based action instance detection method were then examined 

and discussed. 
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Chapter 11 

Conclusions and Future Work 
Digital forensics is a relatively young, and rapidly growing area of forensic science. 

Both practitioners and academia have made much progress in the field since the 

1960’s, when computer evidence was first being considered for use in trials; however, 

there are still many issues that have yet to be resolved. Some issues specifically in 

regards to the automation of digital forensic investigation tasks have been discussed 

in this work, and a method to measure the performance of highly automated, 

knowledge-extracting digital forensic investigation tools compared to the 

performance of human investigators has been given. Previous research has been 

examined with a focus on event reconstruction methods, and weaknesses of these 

methods have been considered. 

The aim of this research was to contribute to digital forensic science by providing a 

faster, more accurate and more efficient method in which digital investigators may 

conduct digital forensic investigations. The focus of this work was on the analysis and 

interpretation phases of an investigation, and specifically on how digital forensic 

investigators make decisions and derive information from suspect data. To this end, 

this research examined object update patterns within a system on the occurrence of an 

action, and what inferences may be made from the observation of these update 

patterns. 

Causal relations between actions and a resulting ensemble of traces may be derived 

for the observation of trace update patterns during a given action instance. Patterns of 

traces in conjunction with their specific update behaviors may be modeled and 

encoded as signatures, allowing for the application of signature-based detection 

methods to be applied to the detection and temporal approximation of happened 

action instances in a post mortem analysis. By focusing on update behaviors of a 

given trace, the most recent as well as some past instances of a modeled action may 

be detected. 

Formalization of the causal relation between the occurrence of an action and the 

resulting ensemble of updated traces has been given in this work. Likewise, a method 

for the derivation of action-trace relations and update behavior categorization of these 

traces in a real-world system was discussed. Once done, the object update threshold 
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specific to the action instance may be statistically derived. With these three pieces of 

information encoded in an action instance signature, the most recent and some past 

instances of the modeled action may be automatically approximated for a given 

system by returning matching objects and checking that returned objects meet 

consistency requirements defined by the update behavior analysis. The results of 

which have been described in Chapter 10. 

11.1 Achievements 
This research proposed a method to automate the human observation and inference 

process in a digital forensic investigation by examining the causal relation between 

action instances and resulting trace update patterns in a system for the purposes of 

hypothesis reduction during investigations. There are seven main contributions of this 

work: 

1. Provided a method for automated action hypothesis encoding, testing and 

reduction using a form of signature-based matching that is extended beyond 

simple matching to include relational consistency between objects and events. 

This relational consistency is then used for hypothesis detection through 

elimination. 

2. Provided a more comprehensive method of detecting the instance(s) of past 

actions based on the observation of the ensemble of traces altered in the 

system. Actions may be modeled as trace update patterns allowing for 

automated, signature-based detection of the actions during a post-mortem 

analysis. 

3. Provided a logical action-sequence checking over detected action instances to 

infer other actions that must have happened where there are no longer 

observable traces of these actions. This method uses the same signature-based 

methods to detect action sequences, and allow the time bounding of newly 

inferred actions. 

4. Defined categories of trace update behaviors that allow for information about 

an action to be detected. This includes the reliable detection of the most recent 

as well as prior instances of an action, and allows for consistency checking 

that helps to detect anti-forensic techniques.  

5. Submitted a method for approximating the instance time-span of an action 

based on the observation of associated traces. When an action occurs, traces 
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are not created instantaneously, but over a given period of time. Instead of 

assuming the action must have happened at the time the trace was updated 

(possibly minutes from when the action originally executed), a more precise 

time-span in which the action must have occurred may be found. 

6. Gave a methodology for measuring investigation beyond false positive and 

false negative error rating that is currently standard in digital forensic tool 

testing. This methodology allows for the measurement and comparison of 

tools as well as processes, and may be used in conjunction with traditional 

error-rating to help determine what the cause of errors are over time. 

7. Provided a method for detecting the occurrence and generic association of 

actions when no prior information is known about the action based on the 

naïve clustering of objects (files) within a certain time-span, where the 

collection of objects will mostly be related to, and contain information about, 

a generic action, such as browsing the Internet. 

11.2 Research Challenges 
There are three main research challenges encountered during the course of this 

research. The first deals with time and resource limits related to action instance 

signature creation. Initial exploratory tests and analysis to derive action-trace update 

relationships took a considerable amount of time for generation, processing and 

analysis phases. Once the three main trace update categories were derived, the time-

consuming process of action-trace extraction and categorization still needed to be 

conducted using mostly manual methods for each action. Because the process is 

currently highly manual, it is impractical to derive and categorize traces for many 

actions. Likewise, the sampling of object update thresholds for a single action is also 

a manual, time-consuming process that must be sampled on many systems with 

different hardware. To be practical, action-trace association tasks would need to be 

automated. Machine learning methods are suggested as long as the various trace 

update behaviors could be effectively learned, and traces could be categorized 

effectively. Similarly, the object update threshold derivation may possibly be 

automated using a cluster of differing hardware, if such hardware was available. 

Without the use of automation in the signature derivation, categorization and 

threshold sampling stages, signature creation for many common actions in a system 

would be impractical. 
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The second challenge comes from a lack of experimental data over long periods of 

time. In the cases given, volunteers allowed the monitoring and subsequent analysis 

of their personal computers over a one-week period; however, finding users who will 

let a researcher monitor their computer usage while using their computer per usual, 

proved to be difficult. Some data was taken from test cases created by the research 

group, but the usage patterns on the test cases did not appear to be representative of a 

normal user that uses their computer for personal and work tasks. Ideally, a larger 

sampling of real user computer-usage data monitored over at least 12 months would 

be ideal. However, this data is understandably difficult to acquire, mostly due to 

privacy issues. Also, if the users were aware that their actions were being monitored, 

they may be inclined to alter their behavior, skewing the results. 

The third challenge is that many other questions, implications and possibilities were 

discovered during this research. This work can be expanded in many directions, and 

staying within the defined scope proved to be a challenge.  

11.3 Future Work 
From this research many areas requiring further research were identified. Directly 

related work that is currently in progress will be discussed, followed by a summary of 

some related topics that will be considered in the future. 

11.3.1 Deriving Prior Probabilities for Actions Based on User Profiling 
Issues with probabilistic methods were discussed in this work, and solutions were 

defined as beyond the scope of this work, but one possible starting point for future 

work will briefly be discussed. Since prior probabilities for an action are based on 

specific user behavior, user profiling could be used to determine whether the user was 

likely to execute a particular action or not. Investigators currently attempt to do user 

profiling at a very general level to determine the computer literacy of a user and thus 

assume what actions the user is likely to be capable of. Some work has been done on 

user profiling for digital forensic purposes (Marrington 2009; Marrington, Mohay et 

al. 2010), but user profiling, especially from a post-mortem analysis, always leads to 

an incomplete picture of the user’s normal behavior. User profiling based on 

detectable computer activities could at least be used to generate more user-specific 

prior probabilities for actions by combining regionally defined prior probabilities with 

specific user action analysis. Regardless, user profiling and statistical methods will 
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always be more general than the particular user in question, and therefore should be 

used as a guide for what action is likely to have happened and not confused as a fact 

that one action did happen and another did not. 

11.3.2 Further Application of Statistical Methods 
Some issues with probabilistic methods have been previously described, but the use of 

these methods could potentially ease the signature creation process, give better trace 

categorization performance, and potentially lead to the inference of more action 

instance information. Statistical methods could be applied in at least two areas: 

machine learning for signature generation and matching, and probabilistic action-trace 

association decisions. 

In regards to machine learning for signature generation and matching, the main goal is 

to incorporate the use of trace update behavior categories. If these categories could be 

learned, they would potentially be more accurate than when derived manually, while 

at the same time providing similar most recent and past action instance detection rates 

to the proposed signature-based method. Automated learning of action instance 

signatures would also make signature-based action instance detection more practical 

for real-world use, since many new action instance signatures could be learned more 

quickly and more accurately. 

In regards to probabilistic action-trace association decisions, the main issue is how 

and at what level to derive accurate prior-probabilities. The probability of an action 

creating a trace should be considered as much as the probability that the action will 

occur. The existence of a trace may be based on the probabilities of many different 

actions both occurring and creating the trace when they occur. Further, since not all 

possible actions can be known, another issue is how to incorporate the probability of 

an unknown action. Many issues exist with probabilistic methods. To address this 

issue the previously mentioned user profiling method will be investigated to 

determine if accurate prior probabilities may be extracted based on a post-mortem 

analysis. 

11.3.3 Analysis of Additional Data Sources 
The use of Regular Expressions to locate a specific trace of interest was proposed in 

this work to enable portability of signatures across systems where file and path names 

may be variable from system to system. In all cases given, the output of the 
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SleuthKit’s mactime tool was used as the system-state input to extract the state of a 

particular file’s meta-data. Regular Expressions work well over this standardized 

format; however, Regular Expressions may also be used to extract data structures 

from raw data (Gladyshev and Almansoori 2010). Because of this, the analysis of file 

content, and the possibility of lower-level analysis – such as the cluster level, will be 

explored in future work. At a minimum, the inclusion of log content data will be 

explored to extract many more action instances. Likewise, the Windows Registry 

contains much information about past action instances. By combining signature-based 

methods with the use of snapshot data as described by Zhu (2011), more action 

instances over the life of the system may possibly be extracted. 

11.3.4 Better Measurement of the Analysis Phase of an Investigation 
During this research, measurement of inference extraction became an issue since the 

inference process is somewhat subjective and may be biased or incomplete. The 

proposed method to measure the accuracy of investigations will be further 

investigated, and applied to specifically measuring the accuracy of inferences in 

investigations. The idea is that the inference generated by more intelligent tools may 

be compared to a human investigator’s inferences during an investigation. Without a 

way to measure how accurate the human is in their inference processes, there will be 

no way to measure how well the forensic tools perform in their inference processes. 

Beyond the application of the proposed investigation accuracy measurement, the 

weight of derived objects – or inferences – should also be incorporated into the 

model. Since all inferences do not have the same weight on the final overall 

conclusion, a weighting system is required. This topic will also be further examined. 

11.3.5 Generic Action Instance Analysis 
An area that appears to have a high potential to produce more action instance 

information that may be interesting to investigators is the described generic action 

instance analysis. By examining the clustering of object updates on a system, it may 

be possible to extract a meaning of the update or relationship of the objects when no 

prior information is known. If action instances have already been extracted, then a 

generic analysis to extract more actions may provide more context about how the 

system has been used. 
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Generic action instance analysis using signatures has been proposed, but much 

research must be conducted into proper parameters to use when little information is 

known beforehand. For example, proper grouping thresholds for single action 

instances as well as grouping parameters to detect sessions. 

Also, one method of keyword analysis of a group of objects was proposed as a way to 

demine what actions the objects are normally related to. This method of trace to 

action categorization will be further examined to determine if object keywords are a 

good indicator of the generic actions they are related to. 

11.3.6 Other Topics 
Other works that will be examined in the future include research into the 

communication and collaboration of criminal justice, academia and corporate entities 

around the world. Communication between these groups was identified as a major 

issue at national and international levels alike. Some organizations, such as the 

Korean National Police, have begun to put emphasis on international collaboration in 

dealing with digital crime (Jang 2009). Collaboration with these groups will be 

pursued. 

Finally, the area of user behavior profiling was a recurring topic during this research. 

It may be possible to create both social and user-computer interaction profiles during 

a post-mortem analysis. This may give an investigator more information about what 

tasks the user is capable of, which many investigators are currently attempting to 

ascertain manually during their investigation (James 2011). Research into user 

behavior profiling based on a post-mortem computer analysis will be considered in 

the future in order to augment proposed automated analysis. 
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Appendices 

Appendix A: Results of precision of investigation vs. the gold standard in case 1. 

Analysis 1: 

Table Appxs.1 Examination 1 artifacts identified compared to the gold standard 

 Inculpatory Exculpatory False 
Positive 

Total 

Gold Standard 12 0 N/A 12 

Triage 
Examination 

4 0 2 6 

 

  
   

 

Analysis 2: 

Table Appxs.2 Examination 2 artifacts identified compared to the gold standard 

 Inculpatory Exculpatory False 
Positive 

Total 

Gold Standard 0 1 N/A 1 

Triage 
Examination 

0 0 5 5 

 

     

 

Analysis 3: 

Table Appxs.3 Examination 3 artifacts identified compared to the gold standard 

 Inculpatory Exculpatory False 
Positive 

Total 

Gold Standard 200 0 N/A 200 

Triage 
Examination 

200 0 0 200 

 

€ 

P =
4
6

= 0.67

€ 

R =
4
12

= 0.33

€ 

F = 2⋅ 0.67⋅ 0.33
0.67+ 0.33

= 0.44

€ 

P =
0
5

= 0

€ 

R =
0
1

= 0

€ 

F = 2⋅ 0⋅ 0
0+ 0

= 0



 

199 

     

 

Analysis 4: 

Table Appxs.4 Examination 4 artifacts identified compared to the gold standard 

 Inculpatory Exculpatory False 
Positive 

Total 

Gold Standard 30 0 N/A 30 

Triage 
Examination 

16 0 200 216 

 

    

 

Analysis 5: 

Table Appxs.5 Examination 5 artifacts identified compared to the gold standard 

 Inculpatory Exculpatory False 
Positive 

Total 

Gold Standard 34 0 N/A 34 

Triage 
Examination 

4 0 26 26 

 

     

 
 
 

€ 

P =
200
200

=1

€ 

R =
200
200

=1

€ 

F = 2⋅ 1⋅ 1
1+1

=1

€ 

P =
16
216

= 0.07

€ 

R =
16
30

= 0.53

€ 

F = 2⋅ 0.07⋅ 0.53
0.07+ 0.53

= 0.12

€ 

P =
4
26

= 0.15

€ 

R =
4
34

= 0.12

€ 

F = 2⋅ 0.15⋅ 0.12
0.15+ 0.12

= 0.13
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Appendix B: Results of precision of investigation vs. the gold standard in case 2. 
• Media Number 1 

Table Appxs.6 Results of a full examination on media number 1 

Fully-Examined Case 

Illegal Objects Notes 

0 No illegal content was detected in a full analysis 

 

Table Appxs.7 Results of preliminary analysis on media number 1 from five examiners 

Preliminary Analysis Results 

Examiner Further 
Analysis 

Suspect Objects Notes 

Examiner 1 Yes 4 Decision made based on found 
images suspicious deleted files and 
searching activity 

Examiner 2 Yes 6 Decision made based on found 
images, cleaner programs, Internet 
activity and evidence of P2P activity 

Examiner 3 Yes 4 Decision made based on found 
images, movies and Internet search 
and browser history 

Examiner 4 Yes 30 

 

Decision made based on large amount 
of highly suspicious images and some 
movie files 

Examiner 5 Yes 903 Decision made based on a large 
amount suspicious images 
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Table Appxs.8 Preliminary analysis object identification error rates for media 
number 1 

Object Identification Error Rate 

Examiner Num. of False 
Positives 

False Positive 
Error 

Num. of False 
Negatives 

False 
Negative 
Error 

Examiner 1 4 1 0 0 

Examiner 2 6 1 0 0 

Examiner 3 4 1 0 0 

Examiner 4 30 1 0 0 

Examiner 5 903 1 0 0 

 

Table Appxs.9 Preliminary analysis accuracy rates for media number 1 

Accuracy Rate 

Examiner Precision Recall F-measure 

Examiner 1 n/a n/a n/a 

Examiner 2 n/a n/a n/a 

Examiner 3 n/a n/a n/a 

Examiner 4 n/a n/a n/a 

Examiner 5 n/a n/a n/a 

 

• Media Number 2 
Table Appxs.10 Results of a full examination on media number 2 

Fully-Examined Case 

Suspect Objects Notes 

19 All illegal objects were images 
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Table Appxs.11 Results of preliminary analysis on media number 2 from five 
examiners 

Examiner Further Analysis Suspect Objects Notes 

Examiner 2 Yes 44 Decision made based on suspicious 
images, cookies and installed 
cleaner 

Examiner 5 Yes 9 

 

Decision made based on suspicious 
images. Note: more suspicious 
images available not listed in 
report. 

Examiner 1 Yes 6 Decision made based on suspicious 
movie, porn chat (cookies), possible 
disk wiping, undeleted, and nothing 
in the live set 

Examiner 3 Yes 75 Decision made based on suspicious 
images, undeleted and cookies 

Examiner 4 Yes 40 

 

Decision made based on many 
suspicious undeleted images and 
trace cleaning software 

 

Table Appxs.12 Preliminary analysis object identification error rates for media 
number 2 

Object Identification Error Rate 

Examiner Num. of False 
Positives 

False Positive 
Error 

Num. of False 
Negatives 

False Negative 
Error 

Examiner 2 25 .56 0 0 

Examiner 5 0 0 10 .47 

Examiner 1 1 .05 13 .68 

Examiner 3 56 .74 0 0 

Examiner 4 21 .53 0 0 
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Table Appxs.13 Preliminary analysis accuracy rates for media number 2 

Accuracy Rate 

Examiner Precision Recall F-measure 

Examiner 2 .43 1 .60 

Examiner 5 1 .47 .64 

Examiner 1 .83 .26 .40 

Examiner 3 .25 1 .41 

Examiner 4 .48 1 .64 

 

• Media Number 3 
Table Appxs.14 Results of a full examination on media number 3 

Fully-Examined Case 

Suspect Objects Notes 

0 No evidence or trace evidence relevant to the investigation 

 

Table Appxs.15 Results of preliminary analysis on media number 3 from five 
examiners 

Examiner Further Analysis Suspect Objects Notes 

Examiner 3 Yes 0 Decision made based on presence 
of virtual machines 

Examiner 5 No 0 n/a 

Examiner 4 Yes 0 Decision made based on evidence 
that user is highly computer literate 

Examiner 2 Yes 0 Decision made based on deleted 
files that could not be processed – 
user also highly computer literate 

Examiner 1 No 0 n/a 
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Table Appxs.16 Preliminary analysis object identification error rates for media 
number 3 

Object Identification Error Rate 

Examiner Num. of False 
Positives 

False Positive 
Error 

Num. of False 
Negatives 

False Negative 
Error 

Examiner 3 0 0 0 0 

Examiner 5 0 0 0 0 

Examiner 4 0 0 0 0 

Examiner 2 0 0 0 0 

Examiner 1 0 0 0 0 

 

Table Appxs.17 Preliminary analysis accuracy rates for media number 3 

Accuracy Rate 

Examiner Precision Recall F-measure 

Examiner 3 n/a n/a n/a 

Examiner 5 n/a n/a n/a 

Examiner 4 n/a n/a n/a 

Examiner 2 n/a n/a n/a 

Examiner 1 n/a n/a n/a 

 

• Media Number 4 
Table Appxs.18 Results of a full examination on media number 4 

Fully-Examined Case 

Suspect Objects Notes 

0 No evidence or trace evidence relevant to the investigation 
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Table Appxs.19 Results of preliminary analysis on media number 4 from five 
examiners 

Examiner Further Analysis Suspect Objects Notes 

Examiner 5 Yes 45 Decision made based on found images 

Examiner 1 No 0 n/a 

Examiner 3 No 0 n/a 

Examiner 4 No 0 Images found, but appear to be non-
exploitation stock photos 

Examiner 2 No 0 n/a 

 

Table Appxs.20 Preliminary analysis object identification error rates for media 
number 4 

Object Identification Error Rate 

Examiner Num. of False 
Positives 

False Positive 
Error 

Num. of False 
Negatives 

False Negative 
Error 

Examiner 5 45 1 0 0 

Examiner 1 0 0 0 0 

Examiner 3 0 0 0 0 

Examiner 4 0 0 0 0 

Examiner 2 0 0 0 0 

 

Table Appxs.21 Preliminary analysis accuracy rates for media number 4 

Accuracy Rate 

Examiner Precision Recall F-measure 

Examiner 5 n/a n/a n/a 

Examiner 1 n/a n/a n/a 

Examiner 3 n/a n/a n/a 

Examiner 4 n/a n/a n/a 

Examiner 2 n/a n/a n/a 
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• Media Number 5 
Table Appxs.22 Results of a full examination on media number 5 

Fully-Examined Case 

Suspect Objects Notes 

182 More images appear to be one the machine but have yet to be 
categorized. 

 

Table Appxs.23 Results of preliminary analysis on media number 5 from five 
examiners 

Examiner Further Analysis Suspect Objects Notes 

Examiner 4 Yes 66 Decision made based on found 
images, keywords and encryption 

Examiner 3 Yes 165 

 

Decision made based on found 
images, movies, keywords, Real 
Player history, evidence of disk 
wiping tools, evidence of 
encryption tools 

Examiner 2 Yes 96 Decision made based on found 
images, movies, encryption 
software, P2P, cleaner software 

Examiner 5 Yes 31 

 

Decision made based on found 
images and movies 

Examiner 1 Yes 85 Decision made based on found 
images, movies 
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Table Appxs.24 Preliminary analysis object identification error rates for media 
number 5 

Object Identification Error Rate 

Examiner Num. of False 
Positives 

False Positive 
Error 

Num. of False 
Negatives 

False Negative 
Error 

Examiner 4 0 0 116 .64 

Examiner 3 0 0 16 .09 

Examiner 2 0 0 86 .47 

Examiner 5 0 0 151 .83 

Examiner 1
  

0 0 97 .53 

 

Table Appxs.25 Preliminary analysis accuracy rates for media number 5 

Accuracy Rate 

Examiner Precision Recall F-measure 

Examiner 4 1 .36 .53 

Examiner 3 1 .91 .95 

Examiner 2 1 .53 .69 

Examiner 5 1 .17 .29 

Examiner 1 1 .47 .64 
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Appendix C: Start and end time tests for the action instances “Starting Internet 
Explorer” and “Starting Firefox”. 

Image Action Time start Time end Time span Seconds 
XP 1713 IE 16:03:04 16:04:17 00:01:13 73 
XP 1713 FF 13:54:52 13:55:39 00:00:47 47 
Win7 1631 IE 09:41:49 09:42:43 00:00:54 54 
Win7 1631 FF 14:11:59 14:12:15 00:00:16 16 
Win7 1723 IE 12:13:39 12:14:20 00:00:41 41 
Win7 1723 FF 15:10:21 15:11:04 00:00:43 43 
XP 1525 IE 12:21:37 12:22:13 00:00:36 36 
XP 1525 FF 16:36:19 16:36:48 00:00:29 29 
XP 1528 IE 12:21:37 12:22:13 00:00:36 36 
XP 1528 FF 16:06:09 16:06:12 00:00:03 3 
XP 1529 IE 12:21:37 12:22:13 00:00:36 36 
XP 1529 FF 16:04:00 16:04:03 00:00:03 3 
XP 1536 IE 16:15:19 16:15:30 00:00:11 11 
XP 1536 FF 14:33:10 14:33:48 00:00:38 38 
XP 1540 IE 16:25:27 16:25:37 00:00:10 10 
XP 1540 FF 16:30:33 16:30:41 00:00:08 8 
XP 1542 IE 15:42:15 15:42:32 00:00:17 17 
Xp 1542 FF 15:41:22 15:41:44 00:00:22 22 
XP 1545 IE 12:38:03 12:38:16 00:00:13 13 
XP 1545 FF 12:15:21 12:15:44 00:00:23 23 
XP 1546 IE 12:21:37 12:22:13 00:00:36 36 
XP 1546 FF 16:16:17 16:16:32 00:00:15 15 
XP 1556 IE 15:37:28 15:38:04 00:00:36 36 
XP 1556 FF 15:35:20 15:35:42 00:00:22 22 
XP 1600 IE 14:38:41 14:38:58 00:00:17 17 
XP 1600 FF 16:44:28 16:45:09 00:00:41 41 
XP 1603 IE 12:21:37 12:22:13 00:00:36 36 
XP 1603 FF 12:11:43 12:12:15 00:00:32 32 
XP 1611 IE 16:47:11 16:47:19 00:00:08 8 
XP 1611 FF 16:45:17 16:45:26 00:00:09 9 
XP 1615 IE 12:02:17 12:02:28 00:00:11 11 
XP 1615 FF 16:52:02 16:52:16 00:00:14 14 
XP 1621 IE 12:21:37 12:22:13 00:00:36 36 
XP 1621 FF 17:49:19 17:49:55 00:00:36 36 
XP 1630 IE 16:27:19 16:27:40 00:00:21 21 
XP 1630 FF 16:28:06 16:28:42 00:00:36 36 
XP 1632 IE 17:29:15 17:29:25 00:00:10 10 
XP 1632 FF Not Ran 

   XP 1644 IE 16:41:55 16:42:05 00:00:10 10 
XP 1644 FF 16:43:16 16:43:45 00:00:29 29 
XP 1648 IE 16:58:51 16:59:10 00:00:19 19 
XP 1648 FF 14:52:28 14:52:43 00:00:15 15 
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XP 1650 IE 12:21:37 12:22:13 00:00:36 36 
XP 1650 FF 11:36:25 11:36:49 00:00:24 24 
XP 1653 IE 16:53:02 16:53:23 00:00:21 21 
XP 1653 FF 16:51:10 16:51:41 00:00:31 31 
XP 1658 IE 15:06:06 15:06:56 00:00:50 50 
XP 1658 FF 11:19:38 11:20:17 00:00:39 39 
XP 1703 IE 17:14:50 17:15:01 00:00:11 11 
XP 1703 FF 17:54:32 17:54:45 00:00:13 13 
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Appendix D: Excerpt of objects updated by the action ‘Open Internet Explorer’ as 
reported by Process Monitor 

HKLM\System\CurrentControlSet\Control\Nls\CustomLocale 
HKLM\System\CurrentControlSet\Control\Nls\CustomLocale\en
-US 
HKLM\System\CurrentControlSet\Control\Nls\CustomLocale 
HKLM\System\CurrentControlSet\Control\Nls\ExtendedLocale 
HKLM\System\CurrentControlSet\Control\Nls\ExtendedLocale 
HKLM\System\CurrentControlSet\Control\Nls\ExtendedLocale\
en-US 
HKLM\System\CurrentControlSet\Control\Nls\ExtendedLocale 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\U
ser Shell Folders 
HKLM\Software\Policies\Microsoft\Windows\Explorer 
HKCU\Software\Policies\Microsoft\Windows\Explorer 
HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{F1B32785-6FBA-4FCF-9D55-7B8E7F157091} 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{F1B32785-6FBA-4FCF-9D55-
7B8E7F157091}\Category 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{F1B32785-6FBA-4FCF-9D55-
7B8E7F157091}\Name 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{F1B32785-6FBA-4FCF-9D55-
7B8E7F157091}\ParentFolder 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{F1B32785-6FBA-4FCF-9D55-
7B8E7F157091}\Description 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{F1B32785-6FBA-4FCF-9D55-
7B8E7F157091}\RelativePath 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{F1B32785-6FBA-4FCF-9D55-
7B8E7F157091}\ParsingName 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{F1B32785-6FBA-4FCF-9D55-
7B8E7F157091}\InfoTip 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{F1B32785-6FBA-4FCF-9D55-
7B8E7F157091}\LocalizedName 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{F1B32785-6FBA-4FCF-9D55-
7B8E7F157091}\Icon 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{F1B32785-6FBA-4FCF-9D55-
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7B8E7F157091}\Security 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{F1B32785-6FBA-4FCF-9D55-
7B8E7F157091}\StreamResource 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{F1B32785-6FBA-4FCF-9D55-
7B8E7F157091}\StreamResourceType 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{F1B32785-6FBA-4FCF-9D55-
7B8E7F157091}\LocalRedirectOnly 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{F1B32785-6FBA-4FCF-9D55-
7B8E7F157091}\Roamable 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{F1B32785-6FBA-4FCF-9D55-
7B8E7F157091}\PreCreate 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{F1B32785-6FBA-4FCF-9D55-
7B8E7F157091}\Stream 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{F1B32785-6FBA-4FCF-9D55-
7B8E7F157091}\PublishExpandedPath 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{F1B32785-6FBA-4FCF-9D55-
7B8E7F157091}\Attributes 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{F1B32785-6FBA-4FCF-9D55-
7B8E7F157091}\FolderTypeID 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{F1B32785-6FBA-4FCF-9D55-
7B8E7F157091}\InitFolderHandler 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{F1B32785-6FBA-4FCF-9D55-
7B8E7F157091}\PropertyBag 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{F1B32785-6FBA-4FCF-9D55-7B8E7F157091} 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\S
essionInfo\2 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\S
essionInfo\2\KnownFolders 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\S
essionInfo\2 
HKCU 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\U
ser Shell Folders 
HKCU 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\U
ser Shell Folders\Local AppData 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\U
ser Shell Folders 
HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions 
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HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{5E6C858F-0E22-4760-9AFE-EA3317B67173} 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{5E6C858F-0E22-4760-9AFE-
EA3317B67173}\Category 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{5E6C858F-0E22-4760-9AFE-
EA3317B67173}\Name 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{5E6C858F-0E22-4760-9AFE-
EA3317B67173}\ParentFolder 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{5E6C858F-0E22-4760-9AFE-
EA3317B67173}\Description 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{5E6C858F-0E22-4760-9AFE-
EA3317B67173}\RelativePath 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{5E6C858F-0E22-4760-9AFE-
EA3317B67173}\ParsingName 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{5E6C858F-0E22-4760-9AFE-
EA3317B67173}\InfoTip 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{5E6C858F-0E22-4760-9AFE-
EA3317B67173}\LocalizedName 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{5E6C858F-0E22-4760-9AFE-
EA3317B67173}\Icon 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{5E6C858F-0E22-4760-9AFE-
EA3317B67173}\Security 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{5E6C858F-0E22-4760-9AFE-
EA3317B67173}\StreamResource 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{5E6C858F-0E22-4760-9AFE-
EA3317B67173}\StreamResourceType 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{5E6C858F-0E22-4760-9AFE-
EA3317B67173}\LocalRedirectOnly 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{5E6C858F-0E22-4760-9AFE-
EA3317B67173}\Roamable 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{5E6C858F-0E22-4760-9AFE-
EA3317B67173}\PreCreate 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{5E6C858F-0E22-4760-9AFE-
EA3317B67173}\Stream 
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HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{5E6C858F-0E22-4760-9AFE-
EA3317B67173}\PublishExpandedPath 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{5E6C858F-0E22-4760-9AFE-
EA3317B67173}\Attributes 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{5E6C858F-0E22-4760-9AFE-
EA3317B67173}\FolderTypeID 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{5E6C858F-0E22-4760-9AFE-
EA3317B67173}\InitFolderHandler 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{5E6C858F-0E22-4760-9AFE-
EA3317B67173}\PropertyBag 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{5E6C858F-0E22-4760-9AFE-EA3317B67173} 
C:\Program Files\Internet Explorer\profapi.dll 
C:\Program Files\Internet Explorer\profapi.dll 
C:\Windows\System32\profapi.dll 
C:\Windows\System32\profapi.dll 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{3EB685DB-65F9-4CF6-A03A-
E3EF65729F3D}\InitFolderHandler 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{3EB685DB-65F9-4CF6-A03A-
E3EF65729F3D}\PropertyBag 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\F
olderDescriptions\{3EB685DB-65F9-4CF6-A03A-E3EF65729F3D} 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\S
essionInfo\2 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\S
essionInfo\2\KnownFolders 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\S
essionInfo\2 
HKCU 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\U
ser Shell Folders 
HKCU 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\U
ser Shell Folders\AppData 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\U
ser Shell Folders 
C:\Users\Administrator\AppData\Roaming 
C:\Users\Administrator\AppData\Roaming 
C:\Users\Administrator\AppData\Roaming 
C:\Users\Administrator\AppData\Roaming 
C:\Users\Administrator\AppData\Roaming\Microsoft\Windows\
Cookies 
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Appendix E: Excerpt of objects updated by the action ‘Open Firefox’ as reported by 
Process Monitor 

HKLM\SOFTWARE\Microsoft\CTF\KnownClasses 
HKLM\SOFTWARE\Microsoft\CTF\KnownClasses 
HKLM\SOFTWARE\Microsoft\CTF\KnownClasses 
HKLM\SOFTWARE\Microsoft\CTF\KnownClasses 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\U
serAssist\{CEBFF5CD-ACE2-4F4F-9178-
9926F41749EA}\Count\P:\Hfref\Nqzvavfgengbe\Qrfxgbc\Cebpzb
a.rkr 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\U
serAssist\{CEBFF5CD-ACE2-4F4F-9178-
9926F41749EA}\Count\P:\Hfref\Nqzvavfgengbe\Qrfxgbc\Cebpzb
a.rkr 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\U
serAssist\{CEBFF5CD-ACE2-4F4F-9178-
9926F41749EA}\Count\HRZR_PGYFRFFVBA 
HKCU\Software\Classes 
HKCU\Software\Classes\.lnk 
HKCR\.lnk 
HKCR\.lnk 
HKCU\Software\Classes\.lnk 
HKCR\.lnk\(Default) 
HKCR\.lnk 
HKCU\Software\Classes 
HKCU\Software\Classes\.lnk\OpenWithProgids 
HKCR\.lnk\OpenWithProgids 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\F
ileExts\.lnk\OpenWithProgids 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\F
ileExts\.lnk\OpenWithProgids 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\F
ileExts\.lnk\OpenWithProgids 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\F
ileExts\.lnk\OpenWithProgids 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\F
ileExts\.lnk\OpenWithProgids 
HKCU\Software\Classes 
HKCU\Software\Classes\.lnk 
HKCR\.lnk 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\F
ileExts\.lnk 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\F
ileExts\.lnk 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\F
ileExts\.lnk\UserChoice 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\F
ileExts\.lnk 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\F
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ileExts\.lnk 
HKCU\Software\Classes 
HKCU\Software\Classes\lnkfile 
HKCR\lnkfile 
HKCR\lnkfile 
HKCU\Software\Classes\lnkfile\CurVer 
HKCR\lnkfile\CurVer 
HKCR\lnkfile 
HKCU\Software\Classes\lnkfile 
HKCR\lnkfile 
HKCR\lnkfile 
HKCR\lnkfile 
HKCU\Software\Classes\lnkfile 
HKCR\lnkfile 
HKCR\lnkfile 
HKCR\lnkfile 
HKCU\Software\Classes\lnkfile 
HKCR\lnkfile\IsShortcut 
HKCR\lnkfile 
HKCU\Software\Classes\lnkfile\ShellEx\DataHandler 
HKCR\lnkfile\ShellEx\DataHandler 
HKCR\.lnk 
HKCU\Software\Classes\.lnk\ShellEx\DataHandler 
HKCR\.lnk\ShellEx\DataHandler 
HKCU\Software\Classes 
HKCU\Software\Classes\* 
HKCR\* 
HKCR\* 
HKCU\Software\Classes\*\ShellEx\DataHandler 
HKCR\*\ShellEx\DataHandler 
HKCU\Software\Classes 
HKCU\Software\Classes\AllFilesystemObjects 
HKCR\AllFilesystemObjects 
HKCR\AllFilesystemObjects 
HKCU\Software\Classes\AllFilesystemObjects\ShellEx\DataHa
ndler 
HKCR\AllFilesystemObjects\ShellEx\DataHandler 
HKCR\AllFilesystemObjects 
HKCR\* 
HKCR\.lnk 
HKCR\lnkfile 
HKCU\Software\Classes 
HKCU\Software\Classes\.lnk 
HKCR\.lnk 
HKCR\.lnk 
HKCU\Software\Classes\.lnk 
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HKCR\.lnk\(Default) 
HKCR\.lnk 
HKCU\Software\Classes 
HKCU\Software\Classes\.lnk\OpenWithProgids 
HKCR\.lnk\OpenWithProgids 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\F
ileExts\.lnk\OpenWithProgids 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\F
ileExts\.lnk\OpenWithProgids 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\F
ileExts\.lnk\OpenWithProgids 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\F
ileExts\.lnk\OpenWithProgids 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\F
ileExts\.lnk\OpenWithProgids 
HKCU\Software\Classes 
HKCU\Software\Classes\.lnk 
HKCR\.lnk 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\F
ileExts\.lnk 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\F
ileExts\.lnk 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\F
ileExts\.lnk\UserChoice 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\F
ileExts\.lnk 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\F
ileExts\.lnk 
HKCU\Software\Classes 
HKCU\Software\Classes\lnkfile 
HKCR\lnkfile 
HKCR\lnkfile 
HKCU\Software\Classes\lnkfile\CurVer 
HKCR\lnkfile\CurVer 
HKCR\lnkfile 
HKCU\Software\Classes\lnkfile 
HKCR\lnkfile 
HKCR\lnkfile 
HKCR\lnkfile 
HKCU\Software\Classes\lnkfile 
HKCR\lnkfile 
HKCR\lnkfile 
HKCR\lnkfile 
HKCU\Software\Classes\lnkfile 
HKCR\lnkfile\IsShortcut 
HKCR\lnkfile 
HKCU\Software\Classes\lnkfile 
HKCU\Software\Classes\lnkfile\shellex\ContextMenuHandlers
\{00021401-0000-0000-C000-000000000046} 
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HKCR\lnkfile\shellex\ContextMenuHandlers\{00021401-0000-
0000-C000-000000000046} 
HKCR\lnkfile\shellex\ContextMenuHandlers\{00021401-0000-
0000-C000-000000000046} 
HKCU\Software\Classes\lnkfile\shellex\ContextMenuHandlers
\{00021401-0000-0000-C000-000000000046} 
HKCR\lnkfile\shellex\ContextMenuHandlers\{00021401-0000-
0000-C000-000000000046}\SuppressionPolicy 
HKCR\lnkfile\shellex\ContextMenuHandlers\{00021401-0000-
0000-C000-000000000046} 
HKCR\lnkfile\shellex\ContextMenuHandlers 
HKCR\lnkfile\shellex\ContextMenuHandlers 
HKCR\AllFilesystemObjects 
HKCU\Software\Classes\AllFilesystemObjects\shellex\Contex
tMenuHandlers 
HKCR\AllFilesystemObjects\shellex\ContextMenuHandlers 
HKCR\AllFilesystemObjects\shellex\ContextMenuHandlers 
HKCU\Software\Classes\AllFilesystemObjects\shellex\Contex
tMenuHandlers 
HKCR\AllFilesystemObjects\shellex\ContextMenuHandlers 
HKCR\AllFilesystemObjects\shellex\ContextMenuHandlers 
HKCU\Software\Classes\AllFilesystemObjects\shellex\Contex
tMenuHandlers\CopyAsPathMenu 
HKCR\AllFilesystemObjects\shellex\ContextMenuHandlers\Cop
yAsPathMenu 
HKCR\AllFilesystemObjects\shellex\ContextMenuHandlers\Cop
yAsPathMenu 
HKCU\Software\Classes\AllFilesystemObjects\shellex\Contex
tMenuHandlers\CopyAsPathMenu 
HKCR\AllFilesystemObjects\shellex\ContextMenuHandlers\Cop
yAsPathMenu\SuppressionPolicy 
HKCR\AllFilesystemObjects\shellex\ContextMenuHandlers\Cop
yAsPathMenu 
HKCU\Software\Classes\AllFilesystemObjects\shellex\Contex
tMenuHandlers\CopyAsPathMenu 
HKCR\AllFilesystemObjects\shellex\ContextMenuHandlers\Cop
yAsPathMenu\(Default) 
HKCR\AllFilesystemObjects\shellex\ContextMenuHandlers\Cop
yAsPathMenu 
HKCR\AllFilesystemObjects\shellex\ContextMenuHandlers 
HKCR\AllFilesystemObjects\shellex\ContextMenuHandlers 
HKCU\Software\Classes\AllFilesystemObjects\shellex\Contex
tMenuHandlers\SendTo 
HKCR\AllFilesystemObjects\shellex\ContextMenuHandlers\Sen
dTo 
HKCR\AllFilesystemObjects\shellex\ContextMenuHandlers\Sen
dTo 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\F
ileExts\.lnk 
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\F
ileExts\.lnk 
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HKCU\Software\Classes 
HKCU\Software\Classes\lnkfile 
HKCR\lnkfile 
HKCR\lnkfile 
HKCU\Software\Classes\lnkfile\CurVer 
HKCR\lnkfile\CurVer 
HKCR\lnkfile 
HKCU\Software\Classes\lnkfile 
HKCR\lnkfile 
HKCR\lnkfile 
HKCR\lnkfile 
HKCU\Software\Classes\lnkfile 
HKCR\lnkfile 
HKCR\lnkfile 
HKCR\lnkfile 
HKCU\Software\Classes\lnkfile 
HKCR\lnkfile\IsShortcut 
HKCR\lnkfile 
HKCU\Software\Classes\lnkfile\ShellEx\{0000000C-0000-
0000-C000-000000000046} 
HKCR\lnkfile\ShellEx\{0000000C-0000-0000-C000-
000000000046} 
HKCR\.lnk 
HKCU\Software\Classes\.lnk\ShellEx\{0000000C-0000-0000-
C000-000000000046} 
HKCR\.lnk\ShellEx\{0000000C-0000-0000-C000-000000000046} 
HKCU\Software\Classes 
HKCU\Software\Classes\* 
HKCR\* 
HKCR\* 
HKCU\Software\Classes\*\ShellEx\{0000000C-0000-0000-C000-
000000000046} 
HKCR\*\ShellEx\{0000000C-0000-0000-C000-000000000046} 
HKCU\Software\Classes 
HKCR\AllFilesystemObjects 
HKCU\Software\Classes\AllFilesystemObjects\ShellEx\{00000
00C-0000-0000-C000-000000000046} 
HKCR\AllFilesystemObjects\ShellEx\{0000000C-0000-0000-
C000-000000000046} 
HKCR\AllFilesystemObjects 
HKCR\* 
HKCR\.lnk 
HKCR\lnkfile 
C:\Users\Public\Desktop\Mozilla Firefox.lnk 
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Appendix F: SigTest.pl Perl script to output object time stamp values given a list of 
file and Registry objects 

#! c:\Perl\Bin\Perl.exe 
 
use File::stat; 
use Time::localtime; 
use Switch; 
 
 # Signature List - What files to get timestamps from 
 # Generated from ProcMon - run more than once and combine to 
remove noise  
 $signatureList=glob("*.sig"); 
 # Saved Registry file after each run (manual) 
 $rawReg="raw.txt"; 
 $convReg="reg.txt"; 
  
 # Read in the sig file and close 
 open (FH, $signatureList) or die "Can't find signature file 
'test.sig'! : $!\n"; 
 @sig_list=<FH>; 
 close (FH); 
  
 if ( -e $rawReg ) { 
  if ( -e "utf16to8.pl" ) { 
   system("perl utf16to8.pl raw.txt > reg.txt"); 
   if ( "$?" == "0" ) { 
    unlink( "raw.txt" ); 
   } else { 
    print "Could not convert the registry 
file!\n"; 
   } 
  } 
 } 
 
 # Slurp the reg file and close (make sure it has been converted 
to UTF8) 
 my $holdTerm = $/; 
 undef $/; 
 open $inf, "<" . $convReg; 
 my $Registry = <$inf>; 
 close $inf; 
 $/ = $holdTerm; 
 
 # Two files will be created with the file time stamps (fts) and 
the reg timestamps (rts) 
 open (fts, ">fts.xls") or die "Can not open fts output file. : 
$!\n"; 
 open (rts, ">rts.xls") or die "Can not open rts output file! : 
$!\n"; 
 
 # Counters 
 $countregistry = 0; 
 $countfiles = 0; 
 $counttotal = 0; 
 
 # Create the xls headders 
 print fts "name\taccessed time\tmodified time\tcreated time\n"; 
 print rts "name\tmodified date\tmodified time\n"; 
 
 foreach $line (@sig_list) { 
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  $line =~ s/^"//; 
  $line =~ s/"$//; 
  $line =~ s/[\r\n]//g; 
  if (-f $line && ($line =~ m/.:*/)) { 
   $st = stat($line); 
   if (!$@) { 
    $astring = ctime($st->atime); 
    $mstring = ctime($st->mtime); 
    $cstring = ctime($st->ctime); 
    #print 
"$line\t$astring\t$mstring\t$cstring\n"; 
    print fts 
"$line\t$astring\t$mstring\t$cstring\n"; 
    $countfiles++ 
   } 
      
  } elsif (($line =~ m/HK[CLU][RUM]/) || ($line =~ 
m/^\\/)) { 
   switch ($line) { 
    case (m/HKCR/) { $line =~ 
s/HKCR/HKEY_CLASSES_ROOT/ } 
    case (m/HKCU/) { $line =~ 
s/HKCU/HKEY_CURRENT_USER/ } 
    case (m/HKLM/) { $line =~ 
s/HKLM/HKEY_LOCAL_MACHINE/ } 
    case (m/HKU/) { $line =~ s/HKU/HKEY_USERS/ } 
   } 
    
   if ( $Registry =~ m/(\Q$line\E)\nClass 
Name:.*\nLast Write Time:\s{3}(\d+\/\d+\/\d+)\s-\s(\d+:\d+\s[AP]M)/ ) 
{ 
    #print "$1 Date: $2 Time: $3\n"; 
    print rts "$line\t$2\t$3\n"; 
    $countregistry++; 
   } else { #print "$line\n"  
    
   }; 
  } 
  $counttotal++ 
 } 
 close (fts); 
 close (rts); 
 
 $addtotal = $countfiles + $countregistry; 
 print "$countfiles files and $countregistry registry ($addtotal 
total) processed out of $counttotal total.\n 
  



 

221 

Appendix G: Excerpt of file timestamp update data for the action Open Internet 
Explorer where gray is the first run and blue is the second run. 

name accessed modified created 
C:\Documents and 
Settings\Administrator\ntuser.dat.LO
G 

Fri Feb 12 
10:16:57 
2010 

Fri Feb 12 
10:16:57 
2010 

 
C:\WINDOWS\system32\config\soft
ware.LOG 

Fri Feb 12 
10:16:57 
2010 

Fri Feb 12 
10:16:57 
2010 

 C:\WINDOWS\system32\shell32.dll Fri Feb 12 10:16:03 2010 
 

C:\WINDOWS\Prefetch\IEXPLORE.EX
E-27122324.pf 

Fri Feb 12 
10:14:56 
2010 

Fri Feb 12 
10:14:56 
2010 

 

C:\WINDOWS\system32\ieapfltr.dat Fri Feb 12 10:14:52 2010 

Mon Feb 12 
16:10:12 
2007 

C:\Documents and 
Settings\Administrator\Cookies\admi
nistrator@live[1].txt 

Fri Feb 12 
10:14:51 
2010 

Fri Feb 12 
10:14:51 
2010 

Fri Feb 12 
10:14:51 
2010 

C:\Documents and 
Settings\Administrator\Cookies\admi
nistrator@msn[1].txt 

Fri Feb 12 
10:14:51 
2010 

Fri Feb 12 
10:14:51 
2010 

Fri Feb 12 
10:14:51 
2010 

C:\Documents and 
Settings\Administrator\ntuser.dat.LO
G 

Fri Feb 12 
16:44:05 
2010 

Fri Feb 12 
16:44:05 
2010 

 
C:\WINDOWS\system32\config\soft
ware.LOG 

Fri Feb 12 
16:44:05 
2010 

Fri Feb 12 
16:44:05 
2010 

 
C:\WINDOWS\Prefetch\IEXPLORE.EX
E-27122324.pf 

Fri Feb 12 
16:42:15 
2010 

Fri Feb 12 
16:42:15 
2010 

 C:\Documents and 
Settings\Administrator\Cookies\admi
nistrator@live[1].txt 

Fri Feb 12 
16:42:09 
2010 

Fri Feb 12 
16:42:09 
2010 

Fri Feb 12 
10:14:51 
2010 

C:\Documents and 
Settings\Administrator\Cookies\admi
nistrator@msn[1].txt 

Fri Feb 12 
16:42:09 
2010 

Fri Feb 12 
16:42:09 
2010 

Fri Feb 12 
10:14:51 
2010 
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Appendix H: List of category 3 traces that are irregularly updated during the 
execution of Internet Explorer 8 

C:\Documents and 
Settings\Administrator\Cookies\*, 

C:\WINDOWS\system32\ieapfltr.dat, 

C:\Documents and 
Settings\Administrator\Application 
Data\Microsoft\IdentityCRL\production\p
pcrlconfig.dll, 

C:\Documents and Settings\All 
Users\Application 
Data\Microsoft\IdentityCRL\production\p
pcrlconfig.dll, 

C:\Documents and 
Settings\Administrator\Application 
Data\Microsoft\CryptnetUrlCache\Content
\7B2238AACCEDC3F1FFE8E7EB5F575
EC9, 

C:\Documents and 
Settings\Administrator\Application 
Data\Microsoft\CryptnetUrlCache\MetaDa
ta\7B2238AACCEDC3F1FFE8E7EB5F57
5EC9, 

C:\WINDOWS\system32\xmllite.dll, 

C:\Documents and 
Settings\Administrator\Local 
Settings\Application 
Data\Microsoft\Internet 
Explorer\frameiconcache.dat, 

C:\Documents and 
Settings\Administrator\Favorites\Links\de
sktop.ini, 

C:\Documents and 
Settings\Administrator\Favorites\Desktop.i
ni, 

C:\WINDOWS\system32\winhttp.dll, 

C:\Program Files\Common 
Files\Microsoft Shared\Windows 
Live\WindowsLiveLogin.dll, 

C:\Program Files\Common 
Files\Microsoft Shared\Windows 
Live\msidcrl40.dll 

C:\WINDOWS\system32\ieui.dll 

C:\WINDOWS\system32\msls31.dll 

C:\WINDOWS\system32\ieapfltr.dll 

C:\Program Files\Internet 
Explorer\xpshims.dll 

C:\WINDOWS\system32\mshtml.dll 

C:\WINDOWS\system32\msfeeds.dll 

C:\WINDOWS\system32\activeds.dll 

C:\WINDOWS\system32\adsldpc.dll 

C:\WINDOWS\system32\credui.dll 

C:\WINDOWS\system32\cryptnet.dll 

C:\WINDOWS\system32\cscdll.dll 

C:\WINDOWS\system32\cscui.dll 

C:\WINDOWS\system32\dhcpcsvc.dll 

C:\WINDOWS\system32\dot3api.dll 

C:\WINDOWS\system32\dot3dlg.dll 

C:\WINDOWS\system32\eapolqec.dll 

C:\WINDOWS\system32\eappcfg.dll 

C:\WINDOWS\system32\eappprxy.dll 

C:\WINDOWS\system32\esent.dll 

C:\WINDOWS\system32\mprapi.dll 

C:\WINDOWS\system32\msxml3r.dll 

C:\WINDOWS\system32\netman.dll 

C:\WINDOWS\system32\netshell.dll 

C:\WINDOWS\system32\onex.dll 

C:\WINDOWS\system32\psapi.dll 

C:\WINDOWS\system32\qutil.dll 

C:\WINDOWS\system32\rasadhlp.dll 

C:\WINDOWS\system32\rsaenh.dll 

C:\WINDOWS\system32\winlogon.exe 
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C:\WINDOWS\system32\winrnr.dll 

C:\WINDOWS\system32\wintrust.dll 

C:\WINDOWS\system32\wmi.dll 

C:\WINDOWS\system32\wtsapi32.dll 

C:\WINDOWS\system32\wzcsapi.dll 

C:\WINDOWS\system32\wzcsvc.dll 

C:\Program Files\Messenger\msmsgs.exe 

C:\WINDOWS\system32\mswsock.dll 

C:\WINDOWS\system32\msxml3.dll 

C:\WINDOWS\system32\atl.dll 

C:\Program Files\Internet 
Explorer\sqmapi.dll 

C:\WINDOWS\system32\schannel.dll 

C:\WINDOWS\AppPatch\aclayers.dll 

C:\WINDOWS\system32\urlmon.dll 

C:\Program Files\Internet 
Explorer\ieproxy.dll 

C:\WINDOWS\system32\iertutil.dll 

C:\WINDOWS\system32\ieframe.dll 

C:\WINDOWS\system32\actxprxy.dll 

C:\WINDOWS\system32\apphelp.dll 

C:\WINDOWS\system32\crypt32.dll 

C:\WINDOWS\system32\cryptdll.dll 

C:\WINDOWS\system32\digest.dll 

C:\WINDOWS\system32\iphlpapi.dll 

C:\WINDOWS\system32\ir32_32.dll 

C:\WINDOWS\system32\ir41_32.ax 

C:\WINDOWS\system32\ir41_qc.dll 

C:\WINDOWS\system32\ir41_qcx.dll 

C:\WINDOWS\system32\ir50_32.dll 

C:\WINDOWS\system32\ir50_qc.dll 

C:\WINDOWS\system32\ir50_qcx.dll 

C:\WINDOWS\system32\mlang.dll 

C:\WINDOWS\system32\msapsspc.dll 

C:\WINDOWS\system32\msisip.dll 

C:\WINDOWS\system32\msnsspc.dll 

C:\WINDOWS\system32\msvcrt40.dll 

C:\WINDOWS\system32\rasapi32.dll 

C:\WINDOWS\system32\rasman.dll 

C:\WINDOWS\system32\rtutils.dll 

C:\WINDOWS\system32\sensapi.dll 

C:\WINDOWS\system32\setupapi.dll 

C:\WINDOWS\system32\sxs.dll 

C:\WINDOWS\system32\tapi32.dll 

C:\WINDOWS\system32\winspool.drv 

C:\WINDOWS\system32\ws2_32.dll 

C:\WINDOWS\system32\ws2help.dll 

C:\WINDOWS\system32\xpsp2res.dll 

C:\WINDOWS\system32\msv1_0.dll 

C:\WINDOWS\system32\msasn1.dll 

C:\WINDOWS\system32\wshext.dll 

C:\WINDOWS\system32\dnsapi.dll 

C:\Documents and 
Settings\Administrator\Cookies\administra
tor@live[1].txt 

C:\Documents and 
Settings\Administrator\Cookies\administra
tor@msn[1].txt 
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Appendix I: Returned objects discovered through the use of generic signature trace 
update clustering. 

2010 10 18 Mon 17:13:21,..c.,/Program Files/Internet 
Explorer/iexplore.exe 
2010 10 18 Mon 17:13:21,..c.,/WINDOWS/system32/url.dll 
2010 10 18 Mon 17:13:22,.a..,/Documents and Settings/user/Application 
Data/Microsoft/SystemCertificates 
2010 10 18 Mon 17:13:22,.a..,/Documents and Settings/user/Application 
Data/Microsoft/SystemCertificates/My 
2010 10 18 Mon 17:13:22,.a..,/Documents and Settings/user/Application 
Data/Microsoft/SystemCertificates/My/CTLs 
2010 10 18 Mon 17:13:22,.a..,/Documents and Settings/user/Application 
Data/Microsoft/SystemCertificates/My/CRLs 
2010 10 18 Mon 17:13:22,.a..,/Documents and Settings/user/Application 
Data/Microsoft/SystemCertificates/My/Certificates 
2010 10 18 Mon 17:13:22,mac.,/WINDOWS/Prefetch 
2010 10 18 Mon 17:13:22,.a..,/WINDOWS/system32/ras 
2010 10 18 Mon 17:13:22,macb,/WINDOWS/Prefetch/RUNDLL32.EXE-
211063BE.pf 
2010 10 18 Mon 17:13:22,macb,/Documents and 
Settings/user/Cookies/user@msn[3].txt (deleted) 
2010 10 18 Mon 17:13:22,macb,/Documents and 
Settings/user/Cookies/user@zune[1].txt (deleted) 
2010 10 18 Mon 17:13:22,.a..,/Documents and Settings/All 
Users/Application Data/Microsoft/Network/Connections 
2010 10 18 Mon 17:13:22,.a..,/Documents and Settings/All 
Users/Application Data/Microsoft/Network/Connections/Pbk 
2010 10 18 Mon 17:13:22,macb,/Documents and 
Settings/user/Cookies/user@windowsmarketplace[1].txt (deleted) 
2010 10 18 Mon 17:13:22,macb,/WINDOWS/system32/wbem/fastprox.dll 
(deleted) 
2010 10 18 Mon 17:13:22,macb,/Documents and 
Settings/user/Cookies/user@bing[1].txt (deleted) 
2010 10 18 Mon 17:13:22,macb,/WINDOWS/system32/wbem/framedyn.dll 
(deleted) 
2010 10 18 Mon 17:13:22,macb,/Documents and 
Settings/user/Cookies/user@atdmt[2].txt (deleted) 
2010 10 18 Mon 17:13:22,macb,/WINDOWS/system32/wbem/krnlprov.dll 
(deleted) 
2010 10 18 Mon 17:13:22,macb,/Documents and 
Settings/user/Cookies/user@live[3].txt (deleted) 
2010 10 18 Mon 17:13:22,.a..,/Documents and Settings/user/Local 
Settings/Application Data/Microsoft/Office 
2010 10 18 Mon 17:13:22,.a..,/Documents and Settings/user/Local 
Settings/Application Data/Microsoft/Office/Groove 
2010 10 18 Mon 17:13:25,...b,/$OrphanFiles/Repository/.. 
2010 10 18 Mon 17:13:25,...b,/Documents and Settings/user/Local 
Settings/Temporary Internet 
Files/Content.IE5/WL2XKB0R/google_ie[1].txt (deleted) 
2010 10 18 Mon 17:13:25,macb,/Documents and 
Settings/user/Cookies/user@google[2].txt (deleted) 
2010 10 18 Mon 17:13:25,...b,/Documents and 
Settings/user/Cookies/user@google[1].txt (deleted) 
2010 10 18 Mon 17:13:26,mac.,/$OrphanFiles/Repository/.. 
2010 10 18 Mon 17:13:26,mac.,/Documents and Settings/user/Local 
Settings/Temporary Internet 
Files/Content.IE5/WL2XKB0R/google_ie[1].txt (deleted) 
2010 10 18 Mon 17:13:26,macb,/Documents and Settings/user/Local 
Settings/Temporary Internet 
Files/Content.IE5/S9OHK3S1/26b57add41fbd610[1].js (deleted) 
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2010 10 18 Mon 17:13:26,macb,/Documents and Settings/user/Local 
Settings/Temporary Internet 
Files/Content.IE5/S9OHK3S1/nav_logo14[1].png (deleted) 
2010 10 18 Mon 17:13:26,macb,/WINDOWS/system32/wbem/wbemcons.dll 
(deleted) 
2010 10 18 Mon 17:13:26,macb,/Documents and Settings/user/Local 
Settings/Temporary Internet Files/Content.IE5/S9OHK3S1/logo1w[1].png 
(deleted) 
2010 10 18 Mon 17:13:26,macb,/WINDOWS/system32/wbem/wmipsess.dll 
(deleted) 
2010 10 18 Mon 17:13:26,...b,/Documents and Settings/user/Local 
Settings/History/History.IE5/MSHist012010101820101019 (deleted) 
2010 10 18 Mon 17:13:26,...b,/Documents and Settings/user/Local 
Settings/History/History.IE5/MSHist012010101820101019/index.dat 
(deleted) 
2010 10 18 Mon 17:13:26,macb,/Documents and Settings/user/Local 
Settings/Temporary Internet 
Files/Content.IE5/WL2XKB0R/kYdwQLTp1rU[1].js (deleted) 
2010 10 18 Mon 17:13:26,macb,/Documents and Settings/user/Local 
Settings/Temporary Internet Files/Content.IE5/WL2XKB0R/favicon[2].ico 
(deleted) 
2010 10 18 Mon 17:13:26,mac.,/Documents and 
Settings/user/Cookies/user@google[1].txt (deleted) 
2010 10 18 Mon 17:13:31,mac.,/WINDOWS/Prefetch/IEXPLORE.EXE-
27122324.pf 
2010 10 18 Mon 17:13:31,macb,/Documents and Settings/user/Local 
Settings/Temp/~DF10EA.tmp (deleted) 
2010 10 18 Mon 17:13:31,macb,/WINDOWS/system32/xolehlp.dll (deleted) 
2010 10 18 Mon 17:13:31,.a.b,/Documents and Settings/user/Local 
Settings/Temp/~DF11A9.tmp (deleted) 
2010 10 18 Mon 17:13:31,macb,/Documents and Settings/user/Local 
Settings/Temp/~DF11CC.tmp (deleted) 
2010 10 18 Mon 17:13:31,.a.b,/Documents and Settings/user/Local 
Settings/Temp/~DF1245.tmp (deleted) 
2010 10 18 Mon 17:13:31,.a.b,/WINDOWS/system32/mtxoci.dll (deleted) 
2010 10 18 Mon 17:13:31,macb,/Documents and Settings/user/Local 
Settings/Temp/~DF1268.tmp (deleted) 
2010 10 18 Mon 17:13:32,.a..,/WINDOWS/Fonts/desktop.ini 
2010 10 18 Mon 17:13:32,.a..,/WINDOWS/Tasks/desktop.ini 
2010 10 18 Mon 17:13:32,.a..,/WINDOWS/desktop.ini 
2010 10 18 Mon 17:13:32,.a..,/WINDOWS/Downloaded Program Files 
2010 10 18 Mon 17:13:32,.a..,/WINDOWS/Downloaded Program 
Files/desktop.ini 
2010 10 18 Mon 17:13:32,.a..,/WINDOWS/Offline Web Pages 
2010 10 18 Mon 17:13:32,.a..,/WINDOWS/Offline Web Pages/desktop.ini 
2010 10 18 Mon 17:13:32,.a..,/WINDOWS/assembly/Desktop.ini 
2010 10 18 Mon 17:13:35,mac.,/WINDOWS/Debug/UserMode/userenv.log 
2010 10 18 Mon 17:13:35,.a..,/WINDOWS/$NtUninstallKB951376-v2$ 
2010 10 18 Mon 17:13:36,.a..,/WINDOWS/system32/mscoree.dll 
2010 10 18 Mon 17:13:36,mac.,/WINDOWS/Prefetch/VERCLSID.EXE-
3667BD89.pf 
2010 10 18 Mon 17:13:36,.a..,/WINDOWS/system32/en-us/occache.dll.mui 
2010 10 18 Mon 
17:13:36,.a..,/WINDOWS/Microsoft.NET/Framework/v2.0.50727/shfusion.dl
l 
2010 10 18 Mon 
17:13:36,.a..,/WINDOWS/Microsoft.NET/Framework/v2.0.50727/Culture.dll 
2010 10 18 Mon 17:13:36,.a..,/WINDOWS/system32/occache.dll 
2010 10 18 Mon 
17:13:36,.a..,/WINDOWS/Microsoft.NET/Framework/v2.0.50727/ShFusRes.dl
l 
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2010 10 18 Mon 
17:13:36,.a..,/WINDOWS/Microsoft.NET/Framework/v2.0.50727/fusion.dll 
2010 10 18 Mon 17:13:37,.a..,/WINDOWS/system32/webcheck.dll 
2010 10 18 Mon 17:13:37,.a..,/WINDOWS/system32/shell32.dll 
2010 10 18 Mon 17:13:44,..c.,/WINDOWS/system32/shell32.dll 
2010 10 18 Mon 17:13:45,mac.,/Documents and Settings/user/Local 
Settings/Application Data/Microsoft/Windows/UsrClass.dat.LOG 
2010 10 18 Mon 17:13:57,macb,/Documents and Settings/user/Local 
Settings/Application Data/Microsoft/Internet 
Explorer/frameiconcache.dat (deleted) 
2010 10 18 Mon 17:13:57,m.c.,/Documents and Settings/user/Local 
Settings/Temp/~DF11A9.tmp (deleted) 
2010 10 18 Mon 17:13:57,m.c.,/Documents and Settings/user/Local 
Settings/Temp/~DF1245.tmp (deleted) 
2010 10 18 Mon 17:13:57,m.c.,/WINDOWS/system32/mtxoci.dll (deleted) 
2010 10 18 Mon 17:13:57,macb,/Documents and Settings/user/Local 
Settings/Application Data/Microsoft/Internet Explorer/Recovery/Last 
Active/RecoveryStore.{B58C96A2-DAD2-11DF-8CD1-0019B95246E6}.dat 
(deleted) 
2010 10 18 Mon 17:13:57,macb,/Documents and Settings/user/Local 
Settings/Temp/~DF3CF6.tmp (deleted) 
2010 10 18 Mon 17:13:57,macb,/Documents and Settings/user/Local 
Settings/Application Data/Microsoft/Internet Explorer/Recovery/Last 
Active/{B58C96A3-DAD2-11DF-8CD1-0019B95246E6}.dat (deleted) 
2010 10 18 Mon 17:13:57,macb,/Documents and Settings/user/Local 
Settings/Temp/~DF3D82.tmp (deleted) 
2010 10 18 Mon 17:13:58,m...,/Documents and Settings/user/Local 
Settings/Temporary Internet Files/Content.IE5/index.dat 
2010 10 18 Mon 17:13:58,m...,/Documents and Settings/user/Local 
Settings/History/History.IE5/index.dat 
2010 10 18 Mon 17:13:58,m...,/Documents and 
Settings/user/IECompatCache/index.dat 
2010 10 18 Mon 17:13:58,m...,/Documents and 
Settings/user/Cookies/index.dat 
2010 10 18 Mon 17:13:58,m...,/Documents and 
Settings/user/UserData/index.dat 
2010 10 18 Mon 17:13:58,m.c.,/Documents and Settings/user/Local 
Settings/Application Data/Microsoft/Internet Explorer/Recovery/Active 
2010 10 18 Mon 17:13:58,.a..,/Documents and Settings/user/PrivacIE 
2010 10 18 Mon 17:13:58,m...,/Documents and 
Settings/user/PrivacIE/index.dat 
2010 10 18 Mon 17:13:58,m...,/Documents and 
Settings/user/IETldCache/index.dat 
2010 10 18 Mon 17:13:58,m...,/Documents and Settings/user/Local 
Settings/Application Data/Microsoft/Feeds Cache/index.dat 
2010 10 18 Mon 17:13:58,m...,/Documents and Settings/user/Local 
Settings/History/History.IE5/MSHist012010101820101019/index.dat 
(deleted)  
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Appendix J: Results of searching for all objects updated on a suspect system at time 
“2008 03 07 Fri 11:35”. 

cat mactime.out | grep "2008 03 07 Fri 11:35" | awk -F, '{print $NF}' 
C:/WINDOWS/msagent/agentctl.dll 
C:/WINDOWS/system32/devenum.dll 
C:/WINDOWS/system32/ksuser.dll 
C:/WINDOWS/system32/ipconf.tsp 
C:/WINDOWS/system32/kmddsp.tsp 
C:/WINDOWS/system32/ndptsp.tsp 
C:/WINDOWS/system32/rastapi.dll 
C:/WINDOWS/system32/unimdm.tsp 
C:/WINDOWS/system32/uniplat.dll 
C:/WINDOWS/system32/hid.dll 
C:/WINDOWS/system32/hidphone.tsp 
C:/WINDOWS/system32/ntlsapi.dll 
C:/WINDOWS/system32/rasppp.dll 
C:/Documents and Settings/Yuandong/Local Settings/Application 
Data/Microsoft/Windows Media/9.0 
C:/Documents and Settings/Yuandong/Local Settings/Application 
Data/Microsoft/Windows Media/9.0/WMSDKNS.XML 
C:/Documents and Settings/Yuandong/Local Settings/Application 
Data/Microsoft/Windows Media/9.0/WMSDKNS.DTD 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EP23UTY5/bg_b[1].gif 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/GVK5INUX/hptg[2].js 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/GVK5INUX/ovr13[2].css 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/ETKB6XYL/blu[2].css 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/GVK5INUX/ushp[2].css 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EP23UTY5/ie[2].css 
C:/Documents and Settings/Yuandong/Cookies/yuandong@c.msn[1].txt 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EP23UTY5/312070BCE01CB4C36B8984D6858B1[1].gif 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EP23UTY5/92947F101AA77A8129E31215C8033[1].jpg 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/ETKB6XYL/glow_b[1].gif 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EP23UTY5/pipe[1].gif 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/ETKB6XYL/primedns[1].gif 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EDG5KXAD/73EA3A497EB807310219A1C4D1E9E[1].gif 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/ETKB6XYL/528E19AA57C59BD28F9241C1469F1[1].gif 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EP23UTY5/WL_b[1].gif 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EDG5KXAD/37276FB1F39BE69AD3AA1528087[1].jpg 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EDG5KXAD/search[1].gif 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/ETKB6XYL/CF3D42982D1982D557E124F8BA983D[1].jpg 
C:/Documents and 
Settings/Yuandong/Cookies/yuandong@msnportal.112.2o7[1].txt 
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C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/ETKB6XYL/11[1].gif 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/GVK5INUX/4C88F0DFE17E3BCF32326190C1CE0[1].gif 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EP23UTY5/hpb[2].js 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EP23UTY5/FDCAAC85D66BE7CB4D71155977E9CC[1].gif 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EDG5KXAD/57627C8031578A8F7E5D628C671AE5[1].jpg 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/ETKB6XYL/bullet[1].gif 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/GVK5INUX/msn_b2[1].gif 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EP23UTY5/9[1].gif 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/ETKB6XYL/84B2F5CD2F23E45C9AF89D1265209B[1].jpg 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/ETKB6XYL/msft[1].gif 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/GVK5INUX/B025C5D96DAF8A8961143BDE5511CC[1].jpg 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EDG5KXAD/494C38D81F69D4863B7240AAC3D439[1].jpg 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/ETKB6XYL/8153BBDB41659C3502E18DEA4C9B7[1].jpg 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/GVK5INUX/F2D98818F41BDC36847174FFD7785[1].jpg 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/ETKB6XYL/F81ABC39FE7CB357D2E8993DC5975[1].jpg 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EDG5KXAD/ieminwidth[2].js 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/GVK5INUX/4E381C752EC4BDE97298CD86591073[1].gif 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EP23UTY5/0000000001_000000000000000506109[1].gif 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EP23UTY5/buttons2[1].gif 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EDG5KXAD/A177725C178F4C6B9E88CC927C9C0[1].jpg 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/ETKB6XYL/pp[1].gif 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/GVK5INUX/mail[1].gif 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EDG5KXAD/31891541001[1].htm 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/ETKB6XYL/free_sim_300x250_2[1].swf 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/GVK5INUX/windowsupdate.microsoft[1].htm 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EP23UTY5/redirect[1].js 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EP23UTY5/redirect[1].js 
C:/Documents and Settings/Yuandong/UserData 
C:/Documents and Settings/Yuandong/UserData/index.dat 
C:/Documents and Settings/Yuandong/UserData/JSC3D5O5 
C:/Documents and Settings/Yuandong/UserData/QTRSXO3U 
C:/Documents and Settings/Yuandong/UserData/BNX3FDGW 
C:/Documents and Settings/Yuandong/UserData/0FFR6GTH 
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C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EDG5KXAD/default[2].htm 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EDG5KXAD/tgar[1].js 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/ETKB6XYL/redirect[1].js 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/GVK5INUX/commontop[1].js 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EP23UTY5/webcomtop[1].js 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EP23UTY5/webcomtop[1].js 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EDG5KXAD/spupdateids[1].js 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/ETKB6XYL/resultslist[1].js 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/ETKB6XYL/resultslist[1].js 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/GVK5INUX/toc[1].htm 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/GVK5INUX/mstoolbar[1].htm 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/GVK5INUX/footer[1].htm 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/GVK5INUX/tgar[1].js 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EP23UTY5/tgar[1].js 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EDG5KXAD/toc[1].js 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/ETKB6XYL/windows_masthead_ltr[1].gif 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/GVK5INUX/content[1].js 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EP23UTY5/hcp[1].css 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/ETKB6XYL/content[1].css 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/GVK5INUX/arrow[1].gif 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EP23UTY5/update_webtrends[1].js 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/ETKB6XYL/blank[1].htm 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/GVK5INUX/errorinformation[1].htm 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EP23UTY5/tgar[2].js 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/ETKB6XYL/banner-right[1].jpg 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EDG5KXAD/content[1].js 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/GVK5INUX/information[1].jpg 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EP23UTY5/warning[1].gif 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/EDG5KXAD/banner-bg[1].jpg 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/ETKB6XYL/CAX07EF1.htm 
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C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/GVK5INUX/trans_pixel[1].gif 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/GVK5INUX/trans_pixel[2].gif 
C:/Documents and Settings/Yuandong/Local Settings/Temporary Internet 
Files/Content.IE5/GVK5INUX/trans_pixel[1].gif 
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Appendix K: Results of searching for groups of objects by path known to correlate to 
a specific action “Internet-related activity”, rounded by minute. 

cat mactime.out | grep -i "Temporary Internet Files" | awk -F, 
'{print $1}' | cut -b -20 | sort | uniq 
2008 03 05 Wed 11:42 
2008 03 05 Wed 12:11 
2008 03 05 Wed 12:12 
2008 03 05 Wed 12:13 
2008 03 05 Wed 12:15 
2008 03 05 Wed 12:16 
2008 03 05 Wed 22:50 
2008 03 07 Fri 11:35 
2008 03 07 Fri 11:37 
2008 03 07 Fri 11:38 
2008 03 07 Fri 11:39 
2008 03 07 Fri 11:40 
2008 03 07 Fri 12:20 
2008 06 23 Mon 10:53 
2008 06 23 Mon 15:54 
2008 06 23 Mon 17:11 
2008 06 23 Mon 17:12 
2008 06 25 Wed 05:24 
2008 06 26 Thu 09:00 
2008 06 26 Thu 09:15 
2008 07 03 Thu 10:14 
2008 09 17 Wed 12:41 
2008 09 17 Wed 12:42 
2008 09 17 Wed 12:43 
2008 09 17 Wed 12:44 
2008 09 17 Wed 12:45 
2008 09 17 Wed 12:46 
2008 09 17 Wed 12:47 
2008 09 17 Wed 16:48 
2008 09 17 Wed 16:49 
2008 09 18 Thu 10:32 
2008 09 18 Thu 10:58 
2008 09 18 Thu 11:28 
2008 09 19 Fri 10:07 
2008 09 19 Fri 10:08 
2008 09 19 Fri 10:09 
2008 09 19 Fri 10:10 
2008 09 19 Fri 10:16 
2008 09 19 Fri 10:19 
2008 09 19 Fri 10:37 
2008 09 19 Fri 11:00 
2008 09 19 Fri 16:35 
2008 09 19 Fri 16:40 
2008 09 19 Fri 16:45 
2008 09 21 Sun 11:09 
2008 09 21 Sun 11:10 
2008 09 21 Sun 11:12 
2008 09 21 Sun 11:13 
2008 09 21 Sun 11:14 
2008 09 21 Sun 11:15 
2008 09 21 Sun 11:16 
2008 09 21 Sun 11:20 
2008 09 21 Sun 11:21 
2008 09 21 Sun 12:23 
2008 09 21 Sun 12:24 
2008 09 21 Sun 12:25 

2008 09 22 Mon 09:32 
2008 09 22 Mon 09:33 
2008 09 22 Mon 09:34 
2008 09 22 Mon 09:38 
2008 09 22 Mon 09:50 
2008 09 22 Mon 09:58 
2008 09 22 Mon 09:59 
2008 09 22 Mon 10:11 
2008 09 22 Mon 10:12 
2008 09 22 Mon 10:14 
2008 09 22 Mon 10:15 
2008 09 22 Mon 10:16 
2008 09 22 Mon 10:58 
2008 09 22 Mon 10:59 
2008 09 22 Mon 11:36 
2008 09 22 Mon 12:40 
2008 09 22 Mon 12:58 
2008 09 22 Mon 12:59 
2008 09 23 Tue 10:33 
2008 09 23 Tue 10:34 
2008 09 23 Tue 10:35 
2008 09 23 Tue 10:36 
2008 09 23 Tue 10:37 
2008 09 23 Tue 10:38 
2008 09 23 Tue 10:39 
2008 09 23 Tue 10:40 
2008 09 23 Tue 10:41 
2008 09 23 Tue 10:42 
2008 09 23 Tue 10:43 
2008 09 23 Tue 10:47 
2008 09 23 Tue 10:48 
2008 09 23 Tue 10:50 
2008 09 23 Tue 10:52 
2008 09 23 Tue 10:55 
2008 09 23 Tue 10:56 
2008 09 23 Tue 10:57 
2008 09 23 Tue 10:58 
2008 09 23 Tue 11:05 
2008 09 23 Tue 15:33 
2008 09 23 Tue 15:34 
2008 09 23 Tue 15:39 
2008 09 23 Tue 15:40 
2008 09 23 Tue 15:41 
2008 09 23 Tue 15:42 
2008 09 23 Tue 15:43 
2008 09 23 Tue 15:44 
2008 09 23 Tue 15:45 
2008 09 23 Tue 15:46 
2008 09 23 Tue 15:47 
2008 09 23 Tue 15:48 
2008 09 23 Tue 15:49 
2008 09 23 Tue 15:51 
2008 09 23 Tue 15:52 
2008 09 23 Tue 19:22 
2008 09 23 Tue 19:23 
2008 09 24 Wed 10:11 
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2008 09 24 Wed 10:12 
2008 09 24 Wed 10:13 
2008 09 24 Wed 10:14 
2008 09 24 Wed 10:33 
2008 09 24 Wed 11:02 
2008 09 24 Wed 11:03 
2008 09 24 Wed 13:02 
2008 09 24 Wed 13:03 
2008 09 24 Wed 19:09 
2008 09 24 Wed 19:35 
2008 09 24 Wed 19:36 
2008 09 24 Wed 19:37 
2008 09 24 Wed 19:39 
2008 09 25 Thu 16:49 
2008 09 25 Thu 16:50 
2008 09 25 Thu 17:13 
2008 09 25 Thu 17:14 
2008 09 25 Thu 17:15 
2008 09 25 Thu 17:16 
2008 09 25 Thu 17:17 
2008 09 25 Thu 17:18 
2008 09 28 Sun 21:22 
2008 09 29 Mon 11:28 
2008 09 29 Mon 12:19 
2008 10 04 Sat 19:27 

2008 10 07 Tue 19:01 
2008 10 07 Tue 19:07 
2008 10 07 Tue 19:45 
2008 10 13 Mon 10:12 
2008 10 13 Mon 10:13 
2008 10 13 Mon 10:23 
2008 10 13 Mon 10:28 
2008 10 26 Sun 10:16 
2008 10 26 Sun 10:17 
2008 10 26 Sun 10:21 
2008 10 26 Sun 10:34 
2008 10 26 Sun 10:43 
2008 10 26 Sun 10:44 
2008 10 26 Sun 10:48 
2008 10 26 Sun 11:03 
2008 11 08 Sat 20:49 
2008 11 28 Fri 10:44 
2008 11 28 Fri 10:46 
2008 12 03 Wed 11:15 
2008 12 03 Wed 11:22 
2008 12 03 Wed 11:23 
2008 12 03 Wed 11:25 
2008 12 03 Wed 11:26 
2008 12 03 Wed 11:32 
2008 12 03 Wed 12:24 
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Appendix L: Commonly occurring words generically detected at times when a 
program was known to execute. 

Computer 1 

Time User 
Action 

Commonly Occurring Words Process 

07/19/2011 22:04:43 Close      1    3 C 
     2    2 VOLUME 
     3    2 SYSTEM 
     4    2 RP191 
     5    2 RESTORE 
     6    2 MY 
     7    2 INI 
     8    2 INFORMATION 
     9    2 F871D828 
    10    2 DOCUMENTS 

firefox.exe 

07/19/2011 23:22:51 Open None firefox.exe 

07/19/2011 23:41:58 Open      1    2 SETTINGS 
     2    1 QUICKTIME 
     3    1 LOCAL 
     4    1 DOWNLOADS 
     5    1 DOCUMENTS 
     6    1 *USERNAME* 
     7    1 DATA 
     8    1 COMPUTER 
     9    1 C 
    10    1 APPLICATION 

firefox.exe 

07/19/2011 23:41:59 Close “ “ firefox.exe 

07/20/2011 01:21:42 Close      1    7 VOLUME 
     2    7 SYSTEM 
     3    7 RP192 
     4    7 RESTORE 
     5    7 INFORMATION 
     6    7 F871D828 
     7    7 C 
     8    7 A148 
     9    7 969FDFB59BDE 
    10    7 4810 

firefox.exe 

07/20/2011 11:55:09 Open      1  173 C 
     2  154 VOLUME 
     3  154 SYSTEM 
     4  154 RP192 
     5  154 RESTORE 
     6  154 INFORMATION 
     7  154 F871D828 
     8  154 A148 
     9  154 969FDFB59BDE 
    10  154 4810 

firefox.exe 

07/20/2011 13:49:57 Close      1   13 LNK 
     2   13 C 
     3   12 VOLUME 

firefox.exe 
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     4   12 SYSTEM 
     5   12 RESTORE 
     6   12 INFORMATION 
     7   12 F871D828 
     8   12 A148 
     9   12 969FDFB59BDE 
    10   12 4810 

07/20/2011 15:10:33 Open      1    3 C 
     2    2 VOLUME 
     3    2 SYSTEM 
     4    2 RP192 
     5    2 RESTORE 
     6    2 LNK 
     7    2 INFORMATION 
     8    2 F871D828 
     9    2 A148 
    10    2 969FDFB59BDE 

firefox.exe 

07/20/2011 16:19:40 Open      1    4 MY 
     2    4 DOCUMENTS 
     3    3 NA 
     4    2 SETTINGS 
     5    2 MUSIC 
     6    2 ITUNES 
     7    2 *USERNAME* 
     8    2 C 
     9    2 AND 
    10    1 RIGHT 

firefox.exe 

07/20/2011 16:19:41 Close “ “ firefox.exe 

07/20/2011 20:23:52 Close      1    4 C 
     2    3 VOLUME 
     3    3 SYSTEM 
     4    3 RESTORE 
     5    3 LNK 
     6    3 INFORMATION 
     7    3 F871D828 
     8    3 A148 
     9    3 969FDFB59BDE 
    10    3 4810 

firefox.exe 

07/20/2011 22:07:06 Open      1   35 SETTINGS 
     2   34 DOCUMENTS 
     3   34 *USERNAME* 
     4   34 C 
     5   34 AND 
     6   33 OFFICE07ENTUCD 
     7   33 DESKTOP 
     8   23 EN 
     9   22 US 
    10   10 ADMIN 

firefox.exe 

07/21/2011 01:24:09 Close      1    7 C 
     2    5 VOLUME 
     3    5 SYSTEM 
     4    5 RESTORE 
     5    5 INFORMATION 
     6    5 F871D828 

firefox.exe 
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     7    5 A148 
     8    5 969FDFB59BDE 
     9    5 4810 
    10    5 4649 

07/21/2011 11:29:01 Open None firefox.exe 

07/21/2011 11:31:39 Close      1   45 C 
     2   27 FILES 
     3   26 PROGRAM 
     4   26 MOZILLA 
     5   26 FIREFOX 
     6   11 DLL 
     7    9 VOLUME 
     8    9 SYSTEM 
     9    9 RP193 
    10    9 RESTORE 

firefox.exe 

07/21/2011 19:29:30 Open      1   26 C 
     2   17 SETTINGS 
     3   15 WINDOWS 
     4   15 MSIL 
     5   15 GAC 
     6   15 ASSEMBLY 
     7   14 GRAPHICS 
     8   14 CLI 
     9   14 ASPECT 
    10    9 SHARED 

firefox.exe 

07/22/2011 02:57:05 Close None firefox.exe 

07/22/2011 11:35:29 Open None firefox.exe 

07/23/2011 03:07:32 Close      1    1 SQMNOOPT08 
     2    1 SQM 
     3    1 SETTINGS 
     4    1 MSN 
     5    1 MICROSOFT 
     6    1 MESSENGER 
     7    1 DOCUMENTS 
     8    1 *USERNAME* 
     9    1 DATA 
    10    1 C 

firefox.exe 

07/23/2011 11:36:13 Open      1   10 SETTINGS 
     2    6 C 
     3    5 PROFILES 
     4    5 MOZILLA 
     5    5 LOCAL 
     6    5 FIREFOX 
     7    5 DOCUMENTS 
     8    5 DEFAULT 
     9    5 *USERNAME* 
    10    5 DATA 

firefox.exe 

07/24/2011 02:26:40 Close      1   15 SETTINGS 
     2   13 C 
     3   11 DATA 
     4   11 APPLICATION 
     5   10 PROFILES 

firefox.exe 
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     6   10 MOZILLA 
     7   10 FIREFOX 
     8   10 DOCUMENTS 
     9   10 DEFAULT 
    10   10 *USERNAME* 

07/24/2011 13:23:58 Open      1   27 C 
     2   19 VOLUME 
     3   19 SYSTEM 
     4   19 RESTORE 
     5   19 INFORMATION 
     6   19 F871D828 
     7   19 A148 
     8   19 969FDFB59BDE 
     9   19 4810 
    10    19 4649 

firefox.exe 

07/24/2011 15:02:30 Open      1   59 C 
     2   51 MOZILLA 
     3   51 FIREFOX 
     4   42 FILES 
     5   39 PROGRAM 
     6   28 SETTINGS 
     7   20 APPLICATION 
     8   19 DOCUMENTS 
     9   19 *USERNAME* 
    10    19 DATA 

firefox.exe 

07/24/2011 15:02:31 Close “ ” firefox.exe 

 

Computer 1 

Time User 
Action 

Commonly Occurring Words Process 

07/20/2011 19:15:48 Open None iexplore.exe 

07/20/2011 19:15:50 Open “ “ iexplore.exe 

07/20/2011 19:24:03 Close     1    2 MY 
     2    2 ITUNES 
     3    2 DOCUMENTS 
     4    1 SETTINGS 
     5    1 MUSIC 
     6    1 MEDIA 
     7    1 DOWNLOADS 
     8    1 *USERNAME* 
     9    1 C 
    10    1 AND 

iexplore.exe 

07/20/2011 19:24:03 Close “ “ iexplore.exe 

07/21/2011 16:08:09 Open      1   21 SETTINGS 
     2   12 C 
     3   11 DOCUMENTS 
     4   11 AND 

iexplore.exe 
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     5   10 TEMPORARY 
     6   10 LOCAL 
     7   10 INTERNET 
     8   10 IE5 
     9   10 FILES 
    10   10 *USERNAME* 

07/21/2011 16:08:10 Open “ “ iexplore.exe 

07/21/2011 18:34:38 Close      1   17 C 
     2   14 SETTINGS 
     3   12 DOCUMENTS 
     4   10 *USERNAME* 
     5   10 AND 
     6    6 TEMP 
     7    5 LNK 
     8    4 VOLUME 
     9    4 SYSTEM 
    10    4 RP193 

iexplore.exe 

07/21/2011 18:34:38 Close “ “ iexplore.exe 

07/23/2011 14:56:45 Open      1   78 C 
     2   51 SETTINGS 
     3   45 FILES 
     4   33 *USERNAME* 
     5   32 DOCUMENTS 
     6   32 AND 
     7   31 PROGRAM 
     8   21 INTERNET 
     9   19 DLL 
    10   18 LOCAL 

iexplore.exe 

07/23/2011 14:56:46 Open “ “ iexplore.exe 

07/23/2011 19:20:09 Close      1   16 SETTINGS 
     2   11 *USERNAME* 
     3    9 DOCUMENTS 
     4    9 C 
     5    9 AND 
     6    7 MICROSOFT 
     7    7 LOCAL 
     8    7 DATA 
     9    7 APPLICATION 
    10    4 RECOVERY 

iexplore.exe 

07/23/2011 19:20:09 Close “ “ iexplore.exe 
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Appendix M: Forensic Investigation of Timelines using Signatures (FITS) bash 
scripts that allow for action instance detection when the object-trace list, action update 
threshold, and a consistency function are given compared to the meta-data of a system 
in mactime format. 

#!/bin/bash 
# FITS: Forensic Investigation of Timelines using Signatures 
# Script to check signatures against input file 
# Input: Fullpath to a file to test signatures against - image 
[vol,part], fls, mactime 
# Output: list of detected signatures, and time > "output/detected" 
# Version: 3/8/2010 
# TODO: Detect Operating System and don’t check sigs for other OS's 
# Support for split image 
 
# Create timeplot/timeline output? 
output_timeline=true 
 
# Global vars 
outputdir="output" 
datafile="${outputdir}/output.mac" 
includesdir="inc" 
 
# Includes 
. ${includesdir}/checkInputFile.sh 255 
. ${includesdir}/processInputFile.sh 255 
. ${includesdir}/signatureTester.sh 255 
. ${includesdir}/output.sh 255 
 
# 
====================================Functions========================
================ 
# sigTest - get all signatures file "signature_list" in same dir, and 
compare to datafile 
sigTest() { 
 if [ -f "signature_list" ]; then 
  echo "[I] Signature File List Detected" 
  echo "[P] Detecting Events..." 
  while read signature; do 
   # Split signature into array 0-type, 1-os, 2-
action, 3-sig, 4-timerange 
   sigArr=(`echo $signature | tr ',' ' '`) 
   if [ -f "${sigArr[3]}" ]; then 
    if [ "${sigArr[0]}" == "core" ]; then 
     # $1 input file - arg3 sig - arg4 time 
range 
     sigtest_core "$1" "${sigArr[3]}" 
"${sigArr[4]}" 
    elif [ "${sigArr[0]}" == "support" ]; then 
     # $1 input file - arg3 sig - arg4 time 
range 
     sigtest_support "$1" "${sigArr[3]}" 
"${sigArr[4]}" 
    elif [ "${sigArr[0]}" == "shared" ]; then 
     echo "[I] Shared Signature Found" 
    # Test generic signature based on RE over 
directory 
    elif [ "${sigArr[0]}" == "general" ]; then 
     # $1 input file - arg3 sig 
     sigtest_general "$1" "${sigArr[3]}" 
    fi 
   else 
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    echo "[I] Signature file ${sigArr[3]} not 
found!" 
   fi 
  done < "signature_list" 
 fi 
return 0 
} 
# =================================End 
Functions================================== 
 
# check_file sets var $filetype [vol,part,fls,mac] - sourced 
check_file "$1" 
if [ $? -eq 0 ]; then 
 output_setup_env 
 echo "[P] Raw file set to: $1"  
 rawfile=$1 
 # process_file creates output/output.mac from given file - 
sourced 
 process_file "$rawfile" "$filetype" 
 if [ -f $datafile ]; then 
  echo "[P] Data file set to: ${outputdir}/output.mac" 
  sigTest "$datafile" 
 fi 
 # If events have been detected, make timeplot data 
 if [ -f "${outputdir}/detected" ]; then 
  echo "[P] Exporting the data to XML" 
  create_timeplot "output" 
 fi 
 output_close 
else 
 echo "$0 [raw_file]" 
 echo " [raw_file] may be:" 
 echo "  volume image file" 
 echo "  partition image file" 
 echo "  fls output file (fls -r -l -m \"/\")" 
 echo "  mactime output file (mactime -d -m -y)" 
 exit 1 
fi 
 
exit 0 
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FITS Included Scripts: 
checkInputFile.sh 
#!/bin/bash 
# Script to test the if input file is image, FLS, or MACTIME 
compliant 
# Input: Fullpath to a file - accepts Disk/Parition Image, FLS 
output, MACTIME output 
# Output: var filetype set to [vol,part,fls,mac] or null 
# Unusable exit 0 - Usable return "1" 
# If sourcing file send "255" as first argument 
# Version: 3/8/2010 
# TODO: Check for split files (*) 
 
# Includes 
# Script to process disk image and fls to get mactime format? 
 
# 
====================================Functions========================
================ 
# check_file - determines the type of file submitted 
# must be image, fls, or mactime formats 
check_file() { 
if [ -n "$1" ] && [ "$1" != "255" ]; then 
 if [ -n "$(file $1 | grep boot)" ]; then 
  # Should be an image 
  # Check for sleuthkit - if no, exit with error 
  if [ "$(fls -V)" ]; then 
   if [ -n "$(file $1 | grep partition)" ]; then 
    # Is volume image 
    if [ "$(mmls $1)" != "" ]; then 
     echo "[I] Volume image detected" 
     filetype="vol" 
     return 0 
    fi 
   else 
    # Is partition image 
    if [ "$(fls $1)" != "" ]; then 
      echo "[I] Partition image 
detected" 
      filetype="part" 
      return 0 
    fi 
   fi 
  else 
   echo "[I] Submitted file looks like disk image, but 
Sleuthkit is not installed" 
   echo "[I] Please install Sleuthkit, or submit the 
evidence as FLS or MACTIME formats" 
   exit 1 
  fi 
 else 
  firstline=$(tail -n 1 $1) 
  flsRE="[0-9]+\|.*\|.*\|.*\|[0-9]+\|[0-9]+\|[0-9]+\|[0-
9]+\|[0-9]+\|[0-9]+$" 
  mactimeRE="[0-9]{4}.[0-9]{2}.[0-9]{2}.{5}[0-9]{2}.[0-
9]{2}.[0-9]{2}\,[0-9]*\,.*\,[0-9]+\,[0-9]+\,.*\,.*$" 
  # Check for correct FLS output 
  if [[ $firstline =~ $flsRE ]]; then 
   echo "[I] Correct FLS format detected" 
   filetype="fls" 
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   return 0 
  else 
   if [[ $firstline =~ $mactimeRE ]]; then 
    echo "[I] Correct MACTIME format detected" 
    filetype="mac" 
    return 0 
   else 
    echo "File type could not be detected. Check 
the file format and try again." 
    echo " Correct FLS output: fls -r -l -m 
\"/\" [image]" 
    echo " Correct mactime output: mactime -
d -m -y -b [bodyfile]" 
    exit 1 
   fi 
  fi 
 fi 
fi  
 
return 1 
} 
 
# =================================End 
Functions================================== 
 
# Check arguments 
if [ "$1" != "255" ]; then 
 if [ -n $1 ] && [ -f "$1" ]; then 
  check_file "$1" 
  result=$? 
 else 
  echo "$0 [evidence_file]" 
  echo " Where evidence_file may be:" 
  echo "  * Disk image [raw, aff, afd, afm, 
afflib, ewf, split]" 
  echo "   (check current sleuthkit image 
support)" 
  echo "  * Disk partition [check current 
sleuthkit fs support]" 
  echo "  * FLS output [fls -r -l -m \"/\"]" 
  echo "  * MACTIME output [mactime -d -m -y]" 
  exit 1 
 fi 
  
exit $result 
fi 
 
 
 
 
 
Compare.sh 
#!/bin/bash 
# Script to compare two time strings sent in "YYYY MM DD DDD 
HH:MM:SS" format (mactime -d -m -y) 
# Can set the time range allowance in minutes with a third argument. 
# If sourcing file send "255" as first argument 
# Version: 29/7/2010 
# TODO: Allow for date and hour change within the set range i.e. 2010 
01 02 23:59=>2010 01 03 00:00 
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# 
====================================Functions========================
================ 
# Compare two given times are equal to the minute - input: two times, 
output: 0 false 1 true 
# Need to take into account hour change and day change while action 
takes place 
compare_times() { 
 if [ "$3" ]; then 
  range=$3 
  #echo "Range set to $3" 
 else 
  range="1" 
 fi 
 if [ "$1" ] && [ "$2" ]; then 
  time1=$(echo $1 | awk -F, '{ print $1 }' | cut -c 16-20) 
  time2=$(echo $2 | awk -F, '{ print $1 }' | cut -c 16-20) 
  htime1=$(echo $time1 | awk -F: '{print $1}') 
  htime2=$(echo $time2 | awk -F: '{print $1}') 
  mtime1=$(echo $time1 | awk -F: '{print $2}') 
  mtime2=$(echo $time2 | awk -F: '{print $2}') 
  let rangepls=$mtime2+$range 
  let rangemns=$mtime2-$range 
  if [ "$htime1" == "$htime2" ]; then 
           if [ $mtime1 -eq $mtime2 ] || [ $mtime1 -le $rangepls ] && 
[ $mtime1 -ge $rangemns ]; then 
    return 0 
   fi 
        fi 
 fi 
return 1 
} 
 
# Compare two dates from a mactime string 
compare_dates() { 
 if [ "$1" ] && [ "$2" ]; then 
  # Get time string in HH:MM 
  date1=$(echo $1 | awk '{print $1" "$2" "$3" "$4}') 
  date2=$(echo $2 | awk '{print $1" "$2" "$3" "$4}') 
  if [ "$date1" == "$date2" ]; then 
   return 0 
  fi 
 fi 
return 1 
} 
 
# Compare both dates and times 
compare_datetime() { 
        compare_dates "$1" "$2" 
        if [ $? -eq 0 ]; then 
                if [ "$3" ]; then 
                        compare_times "$1" "$2" "$3" 
                        return $? 
                else 
                        compare_times "$1" "$2" 
                        return $? 
                fi 
        fi 
return 1 
} 
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# =================================End 
Functions================================== 
 
# Check arguments 
if [ $1 -ne 255 ]; then 
 if [ $# -ne 2 ] && [ $# -ne 3 ]; then 
  echo "$0 [time1] [time2] [range]" 
  echo " Date 1 and Date 1 in time format 'YYYY MM DD 
DDD HH:MM:SS'" 
  echo " (mactime -m -y)" 
  echo " Range is the range allowance in minutes - 
default 1" 
  exit 1 
 else 
  compare_datetime "$1" "$2" 
  result=$? 
 fi 
exit $result 
fi 
 
 
 
 
 
 
processInputFile.sh 
#!/bin/bash 
# Script to process the input file - image [vol,part], fls, mactime 
# Input: Fullpath to a file and file type 
# Output: process each type to get proper mactime format - output in 
folder "output" 
# Output: to name output.fls & ${datafile}=output.mac 
# If sourcing file send "255" as first argument 
# Version: 19/8/2010 
# TODO: Error checking - what about unknown file systems? 
checkInputFile should help 
 
# Includes 
 
# 
====================================Functions========================
================ 
# check_file - determines the type of file submitted 
# must be image, fls, or mactime formats 
process_file() { 
if [ -n "$1" ] && [ -n "$2" ] && [ "$1" != "255" ]; then 
 # Check what type of file 
 case $2 in 
  "vol") 
   process_volume "$1" 
   process_fls "${outputdir}/output.fls";; 
  "part") 
   process_partition "$1" 
   process_fls "${outputdir}/output.fls";; 
  "fls") 
   is_fls "$1" 
   process_fls "${outputdir}/output.fls";; 
  "mac") 
   process_mactime "$1";; 
  *) 
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   echo "Check the file type, and try again 
(checkInputFile.sh)" 
   exit 1;; 
 esac 
fi  
 
return 0 
} 
 
# Process a volume image to get fls output 
process_volume () { 
 echo "[P] Processing Volume Image" 
 offsets=$(mmls $1 | tail -n+6 | awk '{print $3}') 
 for offset in ${offsets[*]} 
 do 
  $(fls -o ${offset} -r -l -m "/" $1 >> 
${outputdir}/output.fls) 
 done 
} 
 
# Process a partition image to get fls output 
process_partition () { 
 echo "[P] Processing Partition Image" 
 $(fls -r -l -m "/" $1 > ${outputdir}/output.fls) 
} 
 
# If file is fls file, copy to output directory 
is_fls() { 
 # Copy fls file to output folder for consistency 
 $(cat $1 > ${outputdir}/output.fls) 
} 
 
# Process an fls file to get mactime output 
process_fls () { 
 echo "[P] Processing FLS File" 
 $(mactime -b $1 -d -m -y > ${datafile}) 
} 
 
# If correct mactime, copy data file to output folder (for 
consistency) 
process_mactime () { 
 echo "[P] Processing MACTIME File" 
 $(cat $1 > ${datafile}) 
} 
 
# =================================End 
Functions================================== 
 
# Check arguments 
if [ "$1" != "255" ]; then 
 outputdir="output" 
 if [ -n "$1" ] && [ -n "$2" ] && [ -f "$1" ]; then 
  datafile="${outputdir}/output.mac" 
  process_file "$1" "$2" 
  result=$? 
 else 
  echo "$0 [evidence_file] [file_type]" 
  echo " Where evidence_file may be:" 
  echo "  * Disk image [raw, aff, afd, afm, 
afflib, ewf, split]" 
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  echo "   (check current sleuthkit image 
support)" 
  echo "  * Disk partition [check current 
sleuthkit fs support]" 
  echo "  * FLS output [fls -r -l -m \"/\"]" 
  echo "  * MACTIME output [mactime -d -m -y]" 
  echo "  And file type is [vol,part,fls,mac]" 
  exit 1 
 fi 
  
exit $result 
fi 
 
 
 
 
 
signatureTester.sh 
#!/bin/bash 
# Script to test a signature against a given data file 
# Input: Datafile in mactime [-d -m -y] format - signature file - 
optional time range (default 1 min) 
# If sourcing file send "255" as first argument 
# Version: 29/7/2010 
# TODO: Time returned by sigtest_core needs to be earliest time found 
# Move General Signature timeplot formatting to createTimeplot.sh 
# Get core event time to test supporting consistency 
 
# 
====================================Functions========================
================ 
# sigtest_core tests core signatures against datafile 
# and returns the time of the event or is inconsistent (throw error 
stop) 
sigtest_core() { 
if [ -n $1 ] && [ -n $2 ]; then 
 if [ "$3" ]; then 
  range=$3 
 else 
  range="1" 
 fi 
 if [ "$1" ] && [ "$2" ]; then 
  local sig_name=$(basename $2 | awk 'sub("....$","")') 
  while read trace; do 
   local cmptime1=$cmptime2 
   # First element is file and path (as specific as 
possible) 
   local trace_file=$(echo $trace | awk -F, '{print 
$1}') 
   # Second element is timestamp to look at in mactime 
format (macb) 
   local trace_ts=$(echo $trace | awk -F, '{print 
$2}') 
   # Search the data file for the file + time - return 
time 
   local trace_file_clean=$(echo $trace_file | sed 
's/\//\\\//g') 
   # Possible to get multiple times from search - 
treat like array (after split on '-' ) 
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   local detected_traces=$(cat "$1" | egrep 
$trace_file_clean$ | egrep $trace_ts | awk -F, '{print $1}' | awk 
'{print $1"-"$2"-"$3"-"$4"-"$5}') 
   # loop through all returned times 
   local let elements=0 # Need counter because 
$trace_times returns 1 element even if more 
   for times in $detected_traces; do 
    let elements=$elements+1 
   done 
   for found_time in $detected_traces; do 
    local trace_time=$(echo $found_time | awk -F- 
'{print $1" "$2" "$3" "$4" "$5}') 
    if [ "$cmptime1" == "" ] && [ $elements -eq 1 
]; then 
     local cmptime2=$trace_time 
     break 
    elif [ "$cmptime1" == "" ] && [ $elements -gt 
1 ]; then 
     echo "[I] Multiple times found, but no 
time to compare them to: $trace_times" 
     break 
    elif [ "$cmptime1" != "" ] && [ $elements -gt 
1 ]; then 
     if [ $(compare_datetime "$cmptime1" 
"$trace_time" "$range") ]; then 
      cmptime2=$trace_time 
     else 
      echo "[I] Questionable (multi-
return) time found in $sig_name: $trace_time" 
     fi 
    fi 
   done 
   #echo $cmptime1 
   #echo $cmptime2 
   if [ "$cmptime1" != "" ] && [ "$cmptime2" != "" ]; 
then 
    compare_datetime "$cmptime1" "$cmptime2" 
"$range" 
    local cmp_result=$? 
    if [ $cmp_result -eq 1 ]; then 
     echo "[I] Inconsistency found in 
signature $sig_name" 
     # Clear vars 
     cmptime1="" 
     cmptime2="" 
     cmp_result=1 
     break 
    fi 
   fi 
  done < "$2" 
 fi 
 if [ "$cmptime1" == "" ] && [ "$cmptime2" != "" ]; then 
  # Only one trace in signature, and trace is detected 
  cmp_result=0 
 fi 
 if [ "$cmp_result" != "" ] && [ $cmp_result -eq 0 ]; then 
  echo "[I] Core event $sig_name detected at $trace_time" 
  $(echo "core,$sig_name,$trace_time" >> 
${outputdir}/detected) 
  # Clear vars 
  cmptime1="" 
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  cmptime2="" 
  cmp_result=1 
  return 0 
 fi 
fi 
return 1 
} 
 
# sigtest_support tests supporting signatures against datafile 
# and returns the time(s) of the event or is inconsistent (throw 
error stop) 
# Sigtest_support may be an array! 
# ----------------- Need to check for the core to support - get core 
time ----------- 
sigtest_support() { 
if [ -n $1 ] && [ -n $2 ]; then 
 if [ "$3" ]; then 
  range=$3 
 else 
  range="1" 
 fi 
 if [ "$1" ] && [ "$2" ]; then 
  local sig_name=$(basename $2 | awk 'sub("....$","")') 
  # Each trace could return one or more elements - treat as 
array 
  while read trace; do 
   # First element is file and path (as specific as 
possible) 
   local trace_file=$(echo $trace | awk -F, '{print 
$1}') 
   # Second element is timestamp to look at in mactime 
format (macb) 
   local trace_ts=$(echo $trace | awk -F, '{print 
$2}') 
   # Search the data file for the file + time - return 
time 
   local trace_file_clean=$(echo $trace_file | sed 
's/\//\\\//g') 
   local detected_traces=$(cat "$1" | egrep 
$trace_file_clean$ | egrep $trace_ts | awk -F, '{print $1}' | awk 
'{print $1"-"$2"-"$3"-"$4"-"$5}') 
   # loop through all returned times 
   local let elements=0 # Need counter because 
$trace_times returns 1 element even if more 
   for times in $detected_traces; do 
    let elements=$elements+1 
   done 
   #echo "Number of elements: $elements" 
   for found_time in $detected_traces; do 
    local trace_time=$(echo $found_time | awk -F- 
'{print $1" "$2" "$3" "$4" "$5}') 
    echo "[I] Supporting event $sig_name detected 
at $trace_time" 
    $(echo "support,$sig_name,$trace_time" >> 
${outputdir}/detected) 
   done 
  done < "$2" 
  return 0 
 fi 
fi 
return 1 
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} 
 
# sigtest_general - iterates through a list to test a RE pattern 
# and returns the time(s) of the event or is inconsistent (throw 
error stop) 
# Groups files by a common known pattern for a specific action like 
"browse" or "install" 
sigtest_general() { 
if [ -n "$1" ] && [ -n "$2" ]; then 
 datafile="$1" 
 while read line; do 
  local sig_name=$(echo $line | awk -F, '{print $1}')  
  local sig_RE=$(echo $line | awk -F, '{print $2}') 
  local gen_traces=$(cat $datafile | egrep "$sig_RE" | awk 
-F, '{print $1}' | sort | uniq | awk -F, '{print $1","}') 
  if [ -n "${gen_traces[@]}" ]; then 
   echo "[I] Occurrences of general event - $sig_name 
- found" 
   # Assign array elements to arg variable to pass to 
function 
   returned_array=$( process_gen_array 
"${gen_traces[@]}" ) 
   # Might want to output to file and have 
createTimeplot take care of formatting 
   OIFS=$IFS 
   IFS=";" 
   evt_range=( $returned_array ) 
   IFS=$OIFS 
   for range in "${evt_range[@]}"; do 
    start_time=$(echo $range | awk -F, '{print 
$1}')  
    # Remove space in front of ending time or get 
xml error 
    end_time=$(echo $range | awk -F, '{print $2}' 
|  sed -e 's/^[ \t]*//') 
    # output to gen signature file 
    #$(echo "<event start=\"$start_time GMT-
0000\" end=\"$end_time GMT-0000\" title=\"$sig_name\"></event>" >> 
${outputdir}/genevents.xml) 
    $(echo 
"general,$sig_name,$start_time,$end_time" >> ${outputdir}/detected) 
   done 
  fi 
 done < $2 
fi 
return 0 
} 
# =================================End 
Functions================================== 
 
# Check arguments 
# Currently treats every sent signature as a core 
if [ "$1" != "255" ]; then 
 . compare.sh 255 
 . processGeneral.sh 255 
 if [ $# -ne 2 ] && [ $# -ne 3 ]; then 
  echo "$0 [data_file] [signature_file] [range]" 
  echo " Datafile should be in mactime (-d -m -y) 
format" 
  echo " Signature file should be in 
[fullpath,timestamp] format" 
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  echo " Range is the range allowance in minutes - 
default 1" 
  exit 1 
 else 
  sigtest_core "$1" "$2" 
  result=$? 
 fi 
  
exit $result 
else 
 . ${includesdir}/processGeneral.sh 255 
 . ${includesdir}/compare.sh 255 
fi 
 
 
 
 
processGeneral.sh 
#!/bin/bash 
# Script to process results of a general signature match 
# Input: Array of times to group 
# Output: Events with a time range 
# If sourcing file send "255" as first argument 
# Version: 5/8/2010 
# TODO: 
 
# 
====================================Functions========================
================ 
# process_gen_array accepts an array of mactime-format timestamps 
YYYY MM DD DDD HH:MM:SS 
# and returns array of csv start and end times [evt start,evt end] 
# FOR TESTING: ONLY GET TIME RANGE PER DAY 
process_gen_array() { 
 local passed_array 
 local timespan_array 
 # Array passed as csv string 
 OIFS=$IFS 
 IFS="," 
 passed_array=( $1 ) 
 IFS=$OIFS 
 # List should already be chronological so get first and compare 
date until non-match 
 # (testing) - fix this later 
 for ts in "${passed_array[@]}"; do 
  if [ "$time1" == "" ]; then 
   time1="$ts" 
   continue 
  fi 
  if [[ $time1 =~ [0-9]{4}.[0-9]{2}.[0-9]{2}.{5}[0-
9]{2}.[0-9]{2}.[0-9]{2} ]]; then 
   #echo "Comparing $time1 and $ts" 
   compare_dates "$time1" "$ts" 
   if [ $? -eq 0 ]; then 
    time2="$ts" 
    continue 
   else 
    compare_dates "$time1" "$time2" 
    if [ $? -eq 0 ]; then 
    
 timespan_array[$[${#timespan_array[@]}+1]]="$time1,$time2;" 
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    else 
    
 timespan_array[$[${#timespan_array[@]}+1]]="$time1,$time1;" 
    fi 
    time1="$ts" 
   fi 
  else 
   time1="$ts" 
  fi 
 done 
echo ${timespan_array[@]} 
} 
 
# =================================End 
Functions================================== 
 
# Check arguments 
# Currently treats every sent signature as a core 
if [ "$1" != "255" ]; then 
 outputdir="output" 
 . compare.sh 255 
 if [ "$1" == "" ]; then 
  echo "$0 [timestamp array]" 
  echo " Where timestamp array is an array of 
timestamps returned by a general signature." 
  exit -1 
 else 
  process_gen_array "$1" 
  result=$? 
 fi 
  
exit $result 
fi 
 
 
 
 
 
output.sh 
#!/bin/bash 
# Script to manage the output of the FITS script 
# OLDInput: output dir - will detect event detection and fls/mactime 
files from output dir 
# OLDOutput: if not dir is given, will default to 'output' dir 
# OLDOutput: 'fsactivity.txt' for plotting, 'events.xml' for event 
plotting - 'preinstall.txt' if detected 
# If sourcing file send "255" as first argument 
# Version: 19/8/2010 
# TODO: Split mactime file based on [os]_install if no fls file 
exists 
# Include ability to send GMT offset 
 
# Vars 
time_offset="0000" 
# Output event files per signature 
evt_gen="events_general.xml" 
evt_core="events_core.xml" 
evt_support="events_support.xml" 
evt_shared="events_shared.xml" 
evt_del="events_deleted.xml" 
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declare -a evt_array=($evt_gen $evt_core $evt_support $evt_shared 
$evt_del) 
 
 
# Includes 
 
# 
====================================Functions========================
================ 
# Sets up output files - one for each signature and assigns the 
variables 
output_setup_env () { 
 # Cleanup output directory 
 $(rm -r -f ${outputdir} && mkdir -p ${outputdir}) 
 $(echo "<data>" > ${outputdir}/events.xml) 
 # It output timeline = true create new files and vars for each 
sig type 
 if [ $output_timeline ]; then 
  for evt_file in "${evt_array[@]}"; do 
   $(echo "<data>" > "${outputdir}/${evt_file}") 
  done 
 fi 
} 
 
# Adds closing brackets to any files that were opened with 
output_setup_env 
output_close () { 
 $(echo "</data>" >> ${outputdir}/events.xml) 
 # It output timeline = true create new files and vars for each 
sig type 
 if [ $output_timeline ]; then 
  for evt_file in "${evt_array[@]}"; do 
   $(echo "</data>" >> "${outputdir}/${evt_file}") 
  done 
 fi 
} 
 
# Input - evt_type,sig_name,trace_time 
# Writes event information in the correct file 
output_event() { 
 echo "Ouput Event! Not used yet" 
} 
 
# Create_timeplot creates timeline/timeplot data from 'detected' 
events 
create_timeplot() { 
if [ -d $1 ] && [ "$1" != "255" ]; then 
 while read line; do 
  sig_type=$(echo "$line" | awk -F, '{print $1}') 
  evt_name=$(echo "$line" | awk -F, '{print $2}') 
  evt_start=$(echo "$line" | awk -F, '{print $3}') 
  evt_end=$(echo "$line" | awk -F, '{print $4}') 
   
  if [ $output_timeline ]; then 
   case $sig_type in 
    "core") 
     $(echo "<event start=\"$evt_start GMT-
${time_offset}\" title=\"$evt_name\">$sig_type event $evt_name 
detected at $evt_start</event>" >> ${outputdir}/events.xml); 
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     $(echo "<event start=\"$evt_start GMT-
${time_offset}\" title=\"$evt_name\">$sig_type event $evt_name 
detected at $evt_start</event>" >> ${outputdir}/${evt_core});; 
    "support") 
     $(echo "<event start=\"$evt_start GMT-
${time_offset}\" title=\"$evt_name\">$sig_type event $evt_name 
detected at $evt_start</event>" >> ${outputdir}/events.xml); 
     $(echo "<event start=\"$evt_start GMT-
${time_offset}\" title=\"$evt_name\">$sig_type event $evt_name 
detected at $evt_start</event>" >> ${outputdir}/${evt_support});; 
    "shared") 
     $(echo "<event start=\"$evt_start GMT-
${time_offset}\" title=\"$evt_name\">$sig_type event $evt_name 
detected at $evt_start</event>" >> ${outputdir}/events.xml); 
     $(echo "<event start=\"$evt_start GMT-
${time_offset}\" title=\"$evt_name\">$sig_type event $evt_name 
detected at $evt_start</event>" >> ${outputdir}/${evt_shared});; 
    "general") 
     $(echo "<event start=\"$evt_start GMT-
${time_offset}\" end=\"$evt_end\" title=\"$evt_name\">$sig_type event 
$evt_name detected from $evt_start to $evt_end</event>" >> 
${outputdir}/events.xml); 
     $(echo "<event start=\"$evt_start GMT-
${time_offset}\" end=\"$evt_end\" title=\"$evt_name\">$sig_type event 
$evt_name detected from $evt_start to $evt_end</event>" >> 
${outputdir}/${evt_gen});; 
    "deleted") 
     $(echo "<event start=\"$evt_start GMT-
${time_offset}\" title=\"$evt_name\">$sig_type event $evt_name 
detected at $evt_start</event>" >> ${outputdir}/events.xml); 
     $(echo "<event start=\"$evt_start GMT-
${time_offset}\" title=\"$evt_name\">$sig_type event $evt_name 
detected at $evt_start</event>" >> ${outputdir}/${evt_del});; 
   esac 
  fi 
  # Check for OS install time 
  case $evt_name in 
   "win_install") 
    local install_time=$( echo $evt_start | awk 
'{print $1"-"$2"-"$3}'); 
    output_OS_install_filter "$install_time";; 
   "mac_install") 
    echo "MAC Install Detected at $evt_start";; 
   "unix_install") 
    echo "Unix Install Detected at $evt_start";; 
  esac 
   
 done < "${outputdir}/detected"  
else 
 echo "[I] No output directory found" 
 exit -1 
fi  
 
return 0 
} 
 
# Split timeplot/timeline graphs based on the OS_Install time, if 
detected 
# Write filter to split mactime file directly 
output_OS_install_filter() { 
 local install_time="$1" 
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 if [ -f "${outputdir}/output.fls" ]; then 
  # Get beginning time from old mactime file 
  if [ "$install_time" != "" ] && [ -f "${datafile}" ]; 
then 
   echo "[I] OS Install time detected, filtering 
plots" 
   local fs_start=$(head -2 ${datafile} | tail -1 | 
awk -F, '{print $1}' | awk '{print $1"-"$2"-"$3}') 
   # Write preinstall.txt 
   $(mactime -b ${outputdir}/output.fls -d -m -y 
$fs_start..$install_time | awk -F, '{print $1}' | cut -c -10,15- | 
cut -c -16 | uniq -c | awk '{print $2"-"$3"-"$4" "$5","$1}' > 
${outputdir}/preinstall.txt) 
   # Write fsactivity.txt 
   $(mactime -b ${outputdir}/output.fls -d -m -y 
$install_time | awk -F, '{print $1}' | cut -c -10,15- | cut -c -16 | 
uniq -c | awk '{print $2"-"$3"-"$4" "$5","$1}' > 
${outputdir}/fsactivity.txt) 
   return 0 
  fi 
 else 
  echo "[I] Could not find FLS file to split plot data" 
  # So we dont get error from timeplot 
  $(echo "" > ${outputdir}/preinstall.txt) 
  $(mactime -b ${outputdir}/output.fls -d -m | awk -F, 
'{print $1}' | cut -c -10,15- | cut -c -16 | uniq -c | awk '{print 
$2"-"$3"-"$4" "$5","$1}' > ${outputdir}/fsactivity.txt) 
  return 1 
 fi 
} 
 
# =================================End 
Functions================================== 
 
# Check arguments 
if [ "$1" != "255" ]; then 
 local outputdir="output" 
 local datfile="${outputdir}/output.mac" 
 local output_timeline=false 
 if [ -n $1 ] && [ -d "$1" ]; then 
  create_timeplot "$1" 
  result=$? 
 else 
  # Default to 'output' directory 
  create_timeplot "output" 
  result=$? 
 fi 
  
exit $result 
fi 
 
 
 
 
createTimeplot.sh 
#!/bin/bash 
# Script to create timeplot files for viewing 
# Input: output dir - will detect event detection and fls/mactime 
files from output dir 
# Input: if not dir is given, will default to 'output' dir 
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# Output: 'fsactivity.txt' for plotting, 'events.xml' for event 
plotting - 'preinstall.txt' if detected 
# If sourcing file send "255" as first argument 
# Version: 3/8/2010 
# TODO: Split mactime file based on [os]_install if no fls file 
exists 
# Include ability to send GMT offset 
 
# Includes 
 
# 
====================================Functions========================
================ 
# check_file - determines the type of file submitted 
# must be image, fls, or mactime formats 
create_timeplot() { 
if [ -d $1 ] && [ "$1" != "255" ]; then 
 outputdir="$1" 
 echo "[P] Creating Event xml file" 
 $(echo "<data>" > ${outputdir}/events.xml) 
 while read line; do 
  evt_name=$(echo "$line" | awk -F, '{print $1}') 
  evt_time=$(echo "$line" | awk -F, '{print $2}') 
  $(echo "<event start=\"$evt_time GMT-0000\" 
title=\"$evt_name\"></event>" >> ${outputdir}/events.xml) 
  # Check for OS install time 
  case $evt_name in 
   "win_install") 
    install_time=$( echo $evt_time | awk '{print 
$1"-"$2"-"$3}');; 
   "mac_install") 
    echo "MAC Install Detected at $evt_time";; 
   "unix_install") 
    echo "Unix Install Detected at $evt_time";; 
  esac 
   
 done < "${outputdir}/detected" 
  
 if [ -f ${outputdir}/genevents.xml ]; then 
  echo "[P] Adding Detected General Events" 
  $(cat ${outputdir}/genevents.xml >> 
${outputdir}/events.xml) 
 fi 
  
 $(echo "</data>" >> ${outputdir}/events.xml) 
  
 # Get beginning time from old mactime file 
 if [ "$install_time" != "" ] && [ -f "${outputdir}/output.mac" 
]; then 
  echo "[I] OS Install time detected, filtering plots" 
  fs_start=$(head -2 ${outputdir}/output.mac | tail -1 | 
awk -F, '{print $1}' | awk '{print $1"-"$2"-"$3}') 
  # Write preinstall.txt 
  $(mactime -b ${outputdir}/output.fls -d -m -y 
$fs_start..$install_time | awk -F, '{print $1}' | cut -c -10,15- | 
cut -c -16 | uniq -c | awk '{print $2"-"$3"-"$4" "$5","$1}' > 
${outputdir}/preinstall.txt) 
  # Write fsactivity.txt 
  $(mactime -b ${outputdir}/output.fls -d -m -y 
$install_time | awk -F, '{print $1}' | cut -c -10,15- | cut -c -16 | 
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uniq -c | awk '{print $2"-"$3"-"$4" "$5","$1}' > 
${outputdir}/fsactivity.txt) 
 else 
  # So we dont get error from timeplot 
  $(echo "" > ${outputdir}/preinstall.txt) 
 fi 
  
else 
 echo "[I] No output directory found" 
 exit -1 
fi  
 
return 0 
} 
 
# =================================End 
Functions================================== 
 
# Check arguments 
if [ "$1" != "255" ]; then 
 if [ -n $1 ] && [ -d "$1" ]; then 
  create_timeplot "$1" 
  result=$? 
 else 
  # Default to 'output' directory 
  create_timeplot "output" 
  result=$? 
 fi 
  
exit $result 
fi 
 
 


