Introduction to the Scientific Method How to ask questions

Dr. Joshua I. James Joshua@cybercrimetech.com 2015-08-20

Overview

- The scientific method
- Terms
- How to make a hypothesis
- Testing hypotheses
- How probable is an answer?

The Scientific Method

• Why do we need it?

- We want to find the truth
- Already know the answer? Maybe there is a better explanation!
- Help convince people that you are right
 - Evidence is King

The Scientific Method

• What is it?

- A process to find the most likely explanation to a question based on evidence that supports or refutes the explanation
- A process to let you show why you are correct

Not Science

- Person 1: "When you are cold drink something warm so you won't get sick."
- Person 2: "How does that reduce your chance of being sick?"
- Person 1: "My grandma said so."

- With the scientific method we can show why something is correct or incorrect
- Facts are true regardless of authority

Steps of the Scientific Method

- 1) Ask a question (what do we want to prove?)
- 2) Do background research
- 3) Guess what the answer is
- 4) Test if your answer is supported by evidence
- 5) Analyze the results (is your answer supported or refuted by the evidence?)
- 6) Document and share your findings

Terms

Scientist

 A person who applies the scientific method to find if a claim is true or false

Research question

- The question you want to answer

Prior works / Prior research

- All of the information you can find related to your research question

Hypothesis

 An educated guess that answers your research question – should be stated as true or false

Evidence

 Information that increases and/or decreases the probability of a hypothesis being true / false

Terms

Experiment

 A repeatable test designed to find evidence to support or deny your hypothesis

Theory

 If a hypothesis is supported by evidence after a large number of experiments, the hypothesis may be considered by the scientist / community as a theory

• Law

 When a theory has been globally tested and largely accepted to be true it may be considered a law

Proof

- Usually mathematical support for a claim

Research questions and hypotheses

- Is the Earth flat?
- Is Korea the best country*?
- Why is coffee addictive?
- Does everyone the same colors?

Some problems to watch out for

We always want to be right

- If you already have the answer, the question is not interesting
- If any answer is correct, the question is not **useful**
- Easy to change the evidence to support your statements (even when it doesn't) – peer review needed
- Being wrong is a **good** thing we can learn a lot from it

Setting up experiments is difficult

- Must be precise
- Must think about any **bias**

The interesting thing about science

- Trying to answer one question, usually brings up many more questions
 - The Earth is not flat. Why not?
 - Motion forces Earth to sphere. Why is there motion?
 - Etc....

All knowledge is probabilistic

- It is impossible to know something is 100% true
- Not all evidence is equal evidence has persuasive weight

All knowledge is probabilistic

- Research Question: The Universe is 10,000 years old
- Evidence:
 - (Against) Examine layers of rock deep in the Earth
 - (Against) Radiometric dating
 - (Against) Fossils / Oil
 - (Against) The farthest light observable in space
 - (For) Literal interpretation of the Bible

A skeptical person that considers evidence

- Probabilities Example:
- Earth is 10,000 years old P(0.5)
 - Rock layers P(-0.25)
 - Radiometric dating P(-0.24)
 - Fossils / Oil P(-0.009)
 - Observable light P(-0.0009)
 - Literal Bible P(+0.0009)
- Probability for 10,000 years: 0.001
 (0.1%) = Not supported

A person that does not accept evidence

- Probabilities Example:
- Earth is 10,000 years old P(0.5)
 - Rock layers P(-0)
 - Radiometric dating P(-0)
 - Fossils / Oil P(-0)
 - Observable light P(-0)
 - Literal Bible P(+0.5)
- Probability for 10,000 years: 1 (100%)
 = well supported "because I said so"

- The persuasiveness of evidence is subjective
- Our belief systems and bias can make us ignore evidence (and come to very strange conclusions)
- Why is bias a problem?
 - Does not lead to Truth
 - Policy based on bias always hurts the whole group

Research questions, hypotheses, experiments

Is this woman a witch?

- H1: This woman is a witch.
- H2: This woman is not a witch.
- How can we test these hypotheses?

• Do hackers only drink soju?

- H1: (for) Observed hackers drank soju.
- H2: (for) Observed hackers drank nothing.
- H2: (against) Observed hackers drank something other than soju.
- How can we test these hypotheses?

Thank you Joshua@cybercrimetech.com