

Counter-Cybercrime Technology Investigation Symposium (CTINS) Open Source Forensic Tools for Capacity Building

Dr. Joshua I. James Joshua.i.james@hallym.ac.kr Legal Informatics and Forensic Science Institute College of International Studies Hallym University

12/06/2016

• Irish case in 2009-2010

- Computer Crimes Unit had 14 investigators (population 4.6 million)
- All based in Dublin rural areas difficult to access
- Case backlog of over 3 years
 - Several liability close calls
- Recession / austerity measures hit police budgets very hard

• Irish case in 2009-2010

- Need to reduce case backlog...
- While reducing budget...
- And maintain quality of investigation

First: Measure!

- What are the most important types of cases?
 - Are priority areas actually priority?
- Where do investigators spend the majority of their time?
- What slows down investigations?
- Are there any obvious time-wasters?

Irish case in 2009-2010 [1]

Table 1

Percentage of incoming investigation requests per crime group in 2009–2010.

Crime group	Incoming investigation requests	Incoming investigation requests
Child exploitation material	444	34%
Data retrieval, Internet investigations, email and fraud/counterfeiting	601	46%
Murder, cell phones, telephone fraud, hacking, kidnappings, drug related	65	5%
Other	196	15%
Total:	1306	100%

Table 2

Average estimated percentage of an investigator's time spent per crime group per week.

Crime group	Average estimated % of investigator's time
Child exploitation material	80%
Data retrieval, Internet investigations,	15%
email and fraud/counterfeiting	
Murder, cell phones, telephone fraud,	5%
hacking, kidnappings, drug related	

Irish case in 2009-2010 [1]

Table 3

Percentage of requests closed per crime group, per total closed requests, and per total incoming investigation requests in 2009–2010.

Crime group	% of requests closed per crime group	% of total closed requests	% of total incoming investigation requests
Child exploitation material	35%	20%	11%
Data retrieval, Internet	65%	52%	29%
investigations, email and fraud/counterfeiting			
Murder, cell phones,	67%	6%	4%
telephone fraud, hacking,			
kidnappings, drug related			
Other	84%	22%	13%
Total:			744

Solving the problem

- Organizational changes
- Implemented custom open source tools
- Biggest change: process flow (tools modified to support process)
- Traditional Digital Forensic investigation process is usually not very optimized

Defining Open Source

Software that provides the source code for review

- Usually able to modify the source code
- Usually has a main developer or community
 - Main developer may be a company

Most liberal definition:

 "Open source software is software with source code that anyone can inspect, modify, and enhance." [2]

• Open Source does not necessarily mean 'Free'

- Many open source tools are provided at no cost
- Some open source tools are commercial products that also provide the source for review / community expansion

- Paid tools tend to have support services similar commercial / closed source software
 - Expert witness services sometimes provided
- Free tools generally rely on the community or self-support
 - Expert witness services not usually provided

In most countries results from open source tools are admissible in court

- Sometimes more accepted than closed source: can see how the tool works (requires programming knowledge)
- Most tools can be accepted if they are properly tested
- Investigator must be the expert witness

Why use open source tools for digital forensic investigation?

- Open Source Digital Forensic tools have improved a lot in recent years
 - All digital forensic tasks can be done in a similar time
- (Usually) Reduced cost
 - Many open source tools are provided for free
 - Charge for training / support
 - Important for *sustainable* capacity building

Why use open source tools for digital forensic investigation?

Improved local support

 More support and control for local languages and data structures (Asian languages / file formats)

Greater flexibility and process automation

 Open source tools normally provide support for multiple platforms

Why use open source tools for digital forensic investigation?

Improved feature expansion

- Open source tools often provide libraries that can be used as a basis for your own tools
- (arguably) Improved security / correctness
 - Open source tools have a potential to be more secure because

Reasons to use commercial closed source tools for digital forensic investigation

Ease of use

- Expert witness describing the tool may be provided
- Technical support almost aways provided
- Closed/commercial products are generally easy to use (low learning curve)
 - Open source tools tend to be harder to use (requires technical ability)
- Commercial tools are sometimes maintained longer

My experience:

- Some costs cannot be easily reduced: hardware – let's focus budgets on hardware
- Can we make a fully-functional digital forensic laboratory using only open source tools?
 - YES! But...
- Providing expensive closed-source software (that must be renewed) does not help countries
 - Buy & train this year what happens next year?

Interesting Open Source Tool (kits)

Autopsy

- http://www.sleuthkit.org/autopsy/

• Volatility

- http://www.volatilityfoundation.org/

• DEFT / Caine

- http://www.deftlinux.net/
- http://www.caine-live.net/
- DeepThought [3]
- Automated Network Triage (ANT) [4]

• Education:

 Video game to train first responders on digital evidence handling [5]

• Hardware:

- FIREBrick [6] acquisition system
- Open source alternative to hardware write blockers and acquisition devices
- Can be built for about \$199
- Uses open-source software
- Allows custom programs

Current Project

Open Source Infrastructure for Child Exploitation Investigation

- Machine learning for automatic classification of images and videos
- Known-bad hash database compatible with C4All (Autopsy with C4All plugin for front-end)
- Costs: Hardware, development, training
- All results can be easily replicated in other countries

- James, J. I., & Gladyshev, P. (2013). A survey of digital forensic investigator decision processes and measurement of decisions based on enhanced preview. Digital Investigation, 10(2), 148–157. https://doi.org/10.1016/j.diin.2013.04.005
- 2) (n.d). What is open source?. OepnSoruce.com. https://opensource.com/resources/what-open-source
- 3) Shaw, A., & Browne, A. (2013). A practical and robust approach to coping with large volumes of data submitted for digital forensic examination. Digital Investigation, 10(2), 116–128. https://doi.org/10.1016/j.diin.2013.04.003
- 4) Koopmans, M. B., & James, J. I. (2013). Automated network triage. Digital Investigation, 10(2), 129–137. https://doi.org/10.1016/j.diin.2013.03.002
- 5) Conway, A., I. James, J., & Gladyshev, P. (2015). Development and initial user evaluation of a virtual crime scene simulator including digital evidence. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST (Vol. 157). https://doi.org/10.1007/978-3-319-25512-5_2
- 6) http://dfire.ucd.ie/?page_id=1011