

Building Public Trust Through Forensic Science and Crime Prevention

Dr. Joshua I. James
Digital Forensic Investigation Research Laboratory
Graduate School of Forensic Science
SoonChunHyang University, Asan, South Korea

Overview

- A Brief History of Digital Crime
- Digital [Forensic] Investigations
- Digital Forensic Science
- Digital Forensic Investigation Research
- Case studies: Science meets practice
- Digital Crime Prevention
 - Measurement
 - Finding Patterns and Relations
 - Predicting Digital Crime
- Digital Crime Education

whoami

- Joshua I. James
 - B.Sc. Network Security, PhD. Digital Forensic Investigation
 - Lecturer: Live Data Forensics, Digital Forensic Practice
 - DF Trainer for the Centre for Cybercrime Investigation, INTERPOL, UNODC, Soonchunhyang University
 - Researcher:
 - DigitalFIRE Laboratory
 - Irish Police
 - KNPU International Cybercrime Research Center
 - KU Digital Forensic Research Center

Developer, DF Automation and Intelligence tools

Digital Crime

- From 2000 to 2012 there has been an estimated 566.4% worldwide growth in Internet users [1]
 - -2.4 billion users
- Approximately a 3.4% increase in U.S. based complaints per year (IC3) [2]
- Digital crime requests seem to be dropping in Korea
 - Not sure that is a good thing! (scope)

Digital Crime Investigation

- Relatively new field
 - Basic eDiscovery conducted in the 60's and 70's
 - Law Enforcement started investigating computers more in early 80's
 - Not really "forensically sound" as we know it now
- 1st Digital Forensic Research Workshop in 2000
 - Attempted to define "Digital Forensic Science"

Not Just Digital Crime

- Nearly every NYC crime involves a cyber component [3]
- How many of you have a cell phone?
 - Texts?
 - Camera?
 - -GPS?
- How many of you have a car navigation system?
- How many of you have a Facebook account?

Digital Investigations

- Digital Investigations can be fruitful in traditional crimes
 - Murder
 - Burglary
 - Drugs
- Digital Investigations are required in digital-only crimes
 - Hacking
 - Malware

Digital [Forensic] Investigations

 process to answer questions about digital states and events [3]

Digital Forensic Investigation

- Special case of a digital investigation
- Used procedures and techniques allow results to be entered in a court of law

Digital [Forensic] Investigations

Digital Forensic Investigation

- The collection, preservation, analysis, and presentation of computer-related evidence
- All procedures and techniques must be "forensically sound" to be considered for admissibility in court

Digital Evidence

- Digital Evidence is data that supports or refutes a hypothesis that was formulated during an investigation [3]
- Digital evidence must be translated into a humanreadable form [4]
 - Each layer of abstraction can introduce error or information loss
 - Result validation required!

Error in parsing a file system with two versions of the same program

What is "Forensically Sound"?

- "The application of a transparent digital forensic process that preserves the original meaning of the data for production in a court of law [5]."
- Derived evidence should be:
 - Reliable
 - Complete
 - Accurate
 - Able to be tested and verified

Evidence Dynamics

- Evidence dynamics is any influence that changes evidence, regardless of intent.
- Applies to digital evidence too!
- Some causes of evidence dynamics in digital investigations:
 - System administrators
 - Offender covering behavior
 - Victim actions
 - Secondary transfer
 - Witnesses
 - Nature/weather

Reliability of Evidence: Chain of Custody

- Chain of custody ensures an unbroken audit
 trail of seized exhibits to determine what was
 done, when and by whom
 - Who, when, where and how the exhibit was collected
 - Who, when, where and how the exhibit was transported
 - Who took possession? When?
 - How was the exhibit stored and protected in storage?
 - Who took it out of storage? When? Why? What did they do with it?

Reliability of Evidence: Authentication of Digital Exhibits

- Must be able to show that any changes on the original have no effect on the evidence (data)
 - Tools in a live environment modify system state, but not user data
 - How do we know that user data is not modified? Experiment!
 - Text or images don't appear at random

Reliability of Evidence: Authentication of Digital Exhibits

- Forensic data acquisition is making an exact copy of the suspect data
- After forensic acquisition, the data should not change
 - If so, you must be able to demonstrate why and how the data was changed
 - Can verify the data has not changed by using a cryptographic hash

Reliability of Evidence: Authentication

- Cryptographic hash
 - SHA, MD5, etc.
 - Relatively small, unique string of characters generated based on a given input
 - MD5 (file.text) =
 053ef45186fff3b4461485b14a554c37
 - Only exactly the same input can produce the same output
 - If the resulting hash of two files is the same, they contain exactly the same data
 - If even one bit is changed in the file, the hash will change!

Goal of an Investigation

- An investigation attempts to support or deny a a question posed to the investigator
 - Question: Was the computer used to download illegal images?
- An investigation should attempt to answer the question and look for evidence of all (reasonable) explanations!
 - Reasonable explanation: A virus downloaded the illegal images.

Digital Forensics in Criminal Investigation

- Usual specialty areas:
 - Computer Forensics
 - Cell Phone Forensics
 - Database Forensics
 - Network Forensics
- Combination specialties:
 - Cybercrime investigation
 - Malware analysis
 - Financial crime analysis

Digital Forensics in Civil Investigation

- Not normally as thorough as criminal investigations
- Usual specialty areas:
 - Computer Forensics
 - Cell Phone Forensics
 - Database Forensics
 - Network Forensics
- Combination specialties:
 - eDiscovery
 - Financial crime analysis
 - Auditing

Normal Cases in Criminal Investigations

- Ireland (similar in Europe/U.S.):
 - Child Exploitation Material ~ 80% of time spent
 - Internet Investigation/fraud ~ 15% of time spent
 - Murder/hacking/kidnapping/drugs ~ 5% of time spent
- Korea
 - Appears to focus largely on hacking, DDoS and reputation defamation cases

Normal Cases in Civil Investigations

- Corporate Investigations:
 - eDiscovery
 - Keyword search
 - eMail/database search
 - Maybe financial inquiry (usually Audit department)
 - Return responsive data very little analysis
 - Data Recovery
- Private Investigator
 - Investigation of cheating spouse
 - Second opinion in criminal case

Digital Forensics in Military

- Military and Intelligence rely heavily on digital forensic investigators
 - Operations involving technology
 - War zones
 - Data recovery/cracking
 - Spying
 - Internal investigations

- Areas of research:
 - Practical
 - Techniques/Forensic Programs
 - Law/Policy
 - Theoretical
 - Models
 - Philosophy

- There is a lot of practical work coming out of academia
 - Software programs/prototypes
 - Techniques and very technical applied work
- Problems:
 - Academics don't always understand what practitioners need (not in the field)
 - Lack of consistency and long-term support

- There is a lot of theoretical work coming out of academia
 - Creating generic models to better understand digital crime
 - Considering what digital crime is
 - What is "cybercrime"?
 - What is "cyber war"?
 - How do you measure digital crime?

- Current problems with theory:
 - Cannot always be applied
 - If theory can be applied, Law Enforcement is usually about 5 to 10 years behind Academia
- Solution?
 - Digital Investigators should strive to be more scientific
 - Scientists should strive to be more applied

Digital Forensic Science

- Forensic science is based in the natural sciences: chemistry, physics, biology, etc.
- Digital Forensics should also be based on sciences: computer science, physics, etc.
 - Digital Forensics should involve the systematic study of the structures and behaviors of digital crime and how it affects physical reality
 - Should lead to more **objective** investigation (evidence based)

The Scientific Method

- Examiners are (should be) neutral finders of fact
 - Bias from personal beliefs
 - Very emotional case (child exploitation)
 - Influence from the media?
 - Bias from cultural beliefs
 - Westerners cannot eat very spicy food

The Scientific Method

- Scientific method
 - Standard procedure for developing a theory
 - helps increase objectivity
 - helps reduce bias

Scientific Method (simplified) [6]

- 1. Ask a question
- 2. Do background research
- 3. Construct a hypothesis
- 4. Test the hypothesis
- 5. Analyze data
- 6. Make conclusions
- 7. Present results

1. Ask a Question

- What is the investigating member trying to prove, exactly?
- What questions will the defense likely ask?

2. Do Background Research

- What type of case is it?
- What is the profile of the suspect?
- What information or data is available?
 - Forensic disk image?
 - Mobile device?
- What information are you likely to need to answer the questions posed by the investigating member?

3. Construct Hypothesis

- Hypothesis is driven by the research question
 - Question: "Was the computer used by a human to download illegal images?"
 - Hypothesis 1: "A web browser was used by a human to download illegal images."
 - Hypothesis 2: "BitTorrent was used by a human to download illegal images."
 - Hypothesis 3 (defensive): "A virus downloaded illegal images"

— ...

4. Test Hypothesis

- For each hypothesis, experiment:
 - In similar system, simulate the same action
 - What traces are created in the system?
 - Hypothesis 1: Possible traces created in Temporary Internet Files
 - Hypothesis 2: BitTorrent client installed
 - Hypothesis 3: Traces of a virus on the system
- Read published articles / academic research papers

5. Analyze Data

- Analyze available data
 - Normally a forensic image of a suspect device
- Look for traces identified during the test phase
- Example:
 - Hypothesis 3: No virus found after scanning with several commercial virus scanners
 - Hypothesis 2: No active or deleted trace of BitTorrent client found on system
 - Hypothesis 1: Suspicious URLs found in IE history, suspicious URLs found in Windows Registry
 TypedURLs MRU list

6. Draw Conclusions

- What conclusions can we make?
- No evidence to support hypothesis 3 (virus)
 - Does that mean there was no virus?
 - NO! Just very unlikely!!
 - No evidence to support that the system was infected by a virus

6. Draw Conclusions (cont.)

- Some evidence to support hypothesis 1 (browser)
 - Does that mean a user used IE to download illegal images?
 - NO! Just very likely!!
 - Some evidence to support that Internet Explorer was used by a human to download suspected illegal images
- Second problem: who downloaded the images?
 - How to associate a human with the action

6. Draw Conclusions (cont.)

- No conclusions 100% definitely happened
- Found evidence increases or decreases the **probability** of a hypothesis
 - The goal is to derive enough evidence to prove a hypothesis beyond a reasonable doubt

7. Present Results

- Answer the initial question as clearly as possible
 - "Was the computer used by a human to download illegal images?"
 - We cannot say "the computer was definitely used by person X to download illegal images"
 - All we can say is, "The evidence suggests that a human used Internet Explorer to download suspected illegal images."

7. Present Results

- Never say a specific user was at the keyboard!
- Never make a claim that is beyond your scope of expertise
 - For example:
 - Indecent images of children
 - Never say "illegal image of a child"
 - Are you a Pediatrician (child doctor)?
 - Can you differentiate between a 16 year old and an 18 year old?
 - "Suspected image of a minor"

Validation of Digital Forensic Triage and Preliminary Analysis

Case Study: Science Meets Practice

Case: Theoretical Work

Signature-Based Detection of User Actions

- Locard's Exchange Principle: "with contact between two items, there will be an exchange"
- Locard's exchange principle also holds in the digital world
- With each event in a computer system, traces relating to the event are created
- Inferring user actions from trace observations:
 - If a user action causes a unique set of traces to be created, a signature can be created to detect the unique pattern of traces
 - A signature is equal to the knowledge of a system to be inferred (the user action)
 - A match of the signature is equal to observing the system

Signature-Based Detection of User Actions

- Individual traces have different update behaviors for the same user action
 - Some are always updated with every execution
 - Some are <u>not</u> always updated with every execution
- By examining trace update behaviors, signature categories can be created
 - Always updated traces allow for the last execution of the user action to be determined
 - Not always updated traces allow for multiple past executions of the user action to be determined
- From this, a model was created that generically applies to all digital devices

Some thoughts on

Crime Prevention

Understanding Crime

- To prevent crime we need a better understanding the crime
 - What motivates the crime?
 - What variables effect the crime?
 - How is this crime related to other crime?
- Relations between variables (and the strength of those relations) can be learned using statistical methods
 - Requires a lot of data

Understanding Crime

- Once we have a better understanding of the crime, we can begin to create strategies that focus on the strongest relationships
- Holistic view:
 - Using statistical methods we can look at variables associated with many different types of crime
 - Strategies can be broad or focused depending on our needs/resources
- Broad = Law/Policy Specific = actionable

Prevention Strategies

- Should not only be about policing
 - Many crimes occur because of social problems that are out of the scope of Law Enforcement
 - But Law Enforcement has all the raw data!
- Transparency and Public Relations
 - Helping to build/direct organizations focused on the variable
 - LE should make more data available for analysis and criticism

Measurement

- Measurement of the crime is necessary
 - Understand what the crime looks like
 - Understand how prevention strategies change the crime
- Remember that crime is dynamic
 - Pick metrics that represent a generalized model of the crime
 - Pick metrics that can be measured over time

Measurement

- Bad metrics:
 - Number of cases reported
 - Assumption: Less cases reported = less crime
 - Number of cases closed by LE
 - Assumption: More cases closed = police effecting the crime
- What does this mean?
 - Better metrics are needed, and might be a combination of different measurements

Prediction

- Once we understand the crime and related factors (in a measurable way) we can begin to predict
- Prediction is difficult
 - Requires a lot of data
 - Requires a thorough understanding of the data
 - Requires a clear question

Prediction

- Why is prediction useful?
 - At a high level, prediction can detect emerging patterns of crime before they become main-stream
 - At a low level, prediction can be used to determine when/where a particular crime is likely to take place

The Public

- What do the public know about digital crime prevention?
- Many of the crimes that happen today are made possible by the public
 - Phishing
 - Social Engineering
 - Malware
- Technology can be secure people are a weakness

The Public

- The best crime prevention technique is EDUCATION
- Getting the public involved in securing their devices
 - Give the educational resources
 - Free online classes
 - Required tech security courses in school/university
 - Easy to understand!

Demonstration:

Understanding Crime Through Data Mining

Data Mining Crime Data

- Data mining law enforcement case data can give insight into the crime and variables that affect the crime
- Law Enforcement has the best data to understand crime (but are not using it!)

Data Mining Crime Data

- Resources for learning data mining:
 - The R Project for Statistical Computing
 - http://www.r-project.org/
 - http://RStudio.org
 - Free Online Course
 - Coursera.org "Data Analysis"
 - Books
 - McCue, Colleen (2006) "Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis". Elsevier.
 - Torgo, Luis (2011) "Data Mining with R". Taylor & Francis Group.

Thoughts on Improving Prevention (Security and Investigations

- Implementing policy based on evidence instead of gut feeling (research)
- Using the outputs of digital forensic investigations to create security policies
- Focusing more on past security research and how it affects us now
- Holding people accountable for their actions
- Thinking globally; cybercrime is not a countryspecific problem
- Education of everyone

References

- 1. (2012, 30 June). "Internet Usage Statistics: The Internet Big Picture." Retrieved 27 Feb, 2013, from http://internetworldstats.com/stats.htm.
- 2. IC3 (2011). 2011 Internet Crime Report, Internet Crime Complaint Center.
- 3. http://www.theepochtimes.com/n2/united-states/nearly-every-nyc-crime-involves-cyber-says-manhatta
 n-da-355692.

 http://www.theepochtimes.com/n2/united-states/nearly-every-nyc-crime-involves-cyber-says-manhatta
 n-da-355692.

 http://www.theepochtimes.com/n2/united-states/nearly-every-nyc-crime-involves-cyber-says-manhatta
 http://www.theepochtimes.com/n2/united-states/nearly-every-nyc-crime-involves-cyber-says-manhatta
 http://www.theepochtimes.com/n2/united-states/nearly-every-nyc-crime-involves-cyber-says-manhatta
 http://www.theepochtimes.com/n2/united-states/nearly-every-nyc-crime-involves-cyber-says-manhatta
 http://www.theepochtimes.com/n2/united-states/nearly-every-nyc-crime-involves-cyber-says-manhatta
 <a href="http://www.theepochtimes.com/n2/united-states/nearly-every-nyc-crime-involves-cyber-says-manhatta-cyber-says-manhatta-cyber-says-manhatta-cyber-says-manhatta-cyber-says-manhatta-cyber-says-manhatta-cyber-says-manhatta-cyber-says-manhatta-cyber-says-manhatta-cyber-says-manhatta-cyber-says-manhatta-cyber-says-man
- 4. Carrier, Brian D. (2006) Basic Digital Forensic Concepts. http://www.digital-evidence.org/di_basics.html
- 5. Casey, Eoghan. (2010) Handbook of Digital Forensics and Investigation. Elsevier Inc.
- 6. McKemmish, Rodney. (2008) When is Digital Evidence Forensically Sound? Advanced in Digital Forensics IV. Springer. http://link.springer.com/chapter/10.1007%2F978-0-387-84927-0_1?Ll=true
- 7. Steps of the scientific method: http://www.sciencebuddies.org/science-fair-projects/project_scientific_method.shtml
- 8. Carrier, Brian D. (2006) A Hypothesis-Based Approach to Digital Forensic Investigations. Purdue University. https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/archive/2006-06.pdf
- 9. Vacca, John R. (2002) *Computer Forensics Computer Crime Scene Investigation*. Charles River Media, INC.
- 10Kruse, Warren G., Jay G. Heiser. (2001) *Computer Forensics Incident Response Essentials*. Lucent Technologies.
- 11Carrier, Brian D. (2002) *Open Source Digital Forensics Tools: The Legal Argument*. www.digital-evidence.org/papers/opensrc_legal.pdf

